So sánh 2 phân số: \(A=\frac{2005\times2005+1}{2005\times2005\times2005-1};B=\frac{2005+1}{2005\times2005-1}\)
\(\frac{2005\times2004-1}{2003\times2005+2004}=?\)
\(\frac{2005\times2004-1}{2003\times2005+2004}=\frac{2005\times2003+2005-1}{2003\times2005+2004}=\frac{2005\times2003+2004}{2003\times2005+2004}=1\)
Tính nhanh:
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
\(\frac{2005\cdot2004-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot\left(2003+1\right)-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2005-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2004}{2003\cdot2005+2004}\)
\(=1\)
2005 x 2004 - 1 / 2003 × 2005 + 2004
= 2005 × (2003 + 1) - 1 / 2003 × 2005 + 2004
= 2005 × 2003 + (2005 - 1) / 2003 × 2005 + 2004
= 2005 × 2003 + 2004 / 2003 × 2005 + 2004
= 1
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
\(=\frac{2005\times\left(2003+1\right)-1}{2003\times2005+2004}\)
\(=\frac{2005\times2003+\left(2005-1\right)}{2003\times2005+2004}\)
\(=\frac{2005\times2003+2004}{2003\times2005+2004}\)
Tính nhanh :
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
\(\frac{2005x2004-1}{2003x2005+2004}\)=\(\frac{4018019}{4018019}\)= 1
Bài giải
\(\frac{2005\text{ x }2004-1}{2003\text{ x }2005+2004}=\frac{2005\text{ x }2004-1}{2003\text{ x }2005+2005-1}=\frac{2005\text{ x }2004-1}{2005\text{ x }2004-1}=1\)
\(\frac{2005\times2004-1}{2003\times2005+2004}\)\(=\)\(\frac{2005\times\left(2003+1\right)-1}{2003\times2005+2004}\)\(=\)\(\frac{2005\times2003+2005-1}{2003\times2005+20042}\)\(=\)\(\frac{2005\times2003+2004}{2003\times2005+2004}\)\(=\)1
Tính bằng cách thuận tiện nhất:
\(y\frac{2006\times2005-1}{2004\times2006+2005}\)
y=\(\frac{2006x2005-1}{2004x2006+2005}=\frac{2006x2005-1}{\left(2005-1\right)x2006+2005}=\frac{2006x2005-1}{2005x2006-2006+2005}=\frac{2006x2005-1}{2005x2006-1}=1\)
TINH NHANH : \(\frac{2004\times2007+6}{2005\times2005+2009}=?\)
Ta có: \(\frac{2004\cdot2007+6}{2005\cdot2005+2009}=\frac{\left(2005-1\right)\cdot2007+6}{2005\cdot2005+2009}=\frac{2005\cdot2007-1\cdot2007+6}{2005\cdot2005+2009}=\frac{2005\cdot2007-2007+6}{2005\cdot2005+2009}\)
\(=\frac{\text{2005 x (2005 + 2) - 2007 + 6}}{\text{2005 x 2005 + 2009}}=\frac{\text{2005 x 2005 + 2005 x 2 - 2007 + 6}}{\text{2005 x 2005 + 2009}}=\frac{\text{2005 x 2005 + 4010 - 2007 + 6}}{\text{2005 x 2005 + 2009}}=\text{ }\frac{\text{2005 x 2005 + 2009}}{\text{2005 x 2005 + 2009}}=1\)
Tính nhanh giá trị của biểu thức :
\(\frac{2004\times2007+6}{2005\times2005+2009}\)
\(\frac{2004\times2007+6}{2005\times2005+2009}\)
\(=\frac{2004\times2007-2007+6}{2005\times2005+2009}\)
\(=\frac{2005\times2005+2005+2005-2007+6}{2005\times2005+2009}\)
\(=\frac{2005\times2005+2009}{2005\times2005+2009}=1\)
1)A=\(\dfrac{2004\times2005+2006\times6-6}{2005\times1997+4\times2005}\)
B=\(\dfrac{1999\times2000+2001\times5-5}{504\times2000+500\times2000}\)
C=\(\dfrac{72\div2\times574+286\times2\times64}{4+4+8+12+20+...+220}\)
tính bằng cách hợp lí :
\(\frac{1}{2001\times2003}+\frac{1}{2003\times2005}+\frac{1}{2005\times2007}+.....+\frac{1}{2009\times2011}+\frac{1}{2011\times2013}\)
Ta có: 1/ 2001 . 2003 = 1/2001 - 1/2003...
=> 1/2001 - 1/2003 + 1/2003 - 1/2005 + 1/2005 - 1/2007 + ... +1/2009 - 1/2011 +1/2011 - 1/2013
= 1/2001 - 1/2013
= 4/ 1342671
\(\frac{1}{2001\times2003}\)+\(\frac{1}{2003\times2005}\)+\(\frac{1}{2005\times2007}\)+........+\(\frac{1}{2009\times2011}\)+\(\frac{1}{2011\times2013}\)
=\(\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2007}\)+........+\(\frac{1}{2009}\)-\(\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2013}\)
=\(\frac{1}{2001}\)-\(\frac{1}{2013}\)
=\(\frac{2013}{4028013}-\frac{2001}{4028013}\)=\(\frac{2}{4028013}\)
Tính
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2004\times2005}+\frac{1}{2005\times2006}=A\)
\(\frac{1}{6}+\frac{2}{15}+\frac{4}{45}+\frac{2}{99}+\frac{10}{600}=A\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=1-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
\(1)A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}\)
\(\implies A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(\implies A=1-\frac{1}{2006}\)
\(\implies A=\frac{2005}{2006}\)