Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Ben 10
30 tháng 7 2017 lúc 21:07

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

huyền trần thị thanh
Xem chi tiết
Nguyễn Hoàng Gia
Xem chi tiết
Phan Thanh Tịnh
4 tháng 11 2016 lúc 15:33

A B C F A' E
Theo hệ thức lượng trong tam giác vuông :

\(\Delta ABC\)có :\(BA'=\frac{AB^2}{BC};CA'=\frac{AC^2}{BC}\)

\(\Delta BDA\)có :\(BF=\frac{BA'^2}{AB}=\left(\frac{AB^2}{BC}\right)^2:AB=\frac{AB^3}{BC^2}\)

\(\Delta DAC\)có :\(CE=\frac{CA'^2}{AC}=\left(\frac{AC^2}{BC}\right)^2:AC=\frac{AC^3}{BC^2}\)

\(\Rightarrow\frac{CE}{BF}=\frac{AC^3}{BC^2}:\frac{AB^3}{BC^2}=\frac{AC^3}{AB^3}\)

Đặng Thị Ý Nhi
5 tháng 11 2016 lúc 9:38

cái này toán lớp mấy vậy bạn

Lê Thị Phương Anh
10 tháng 11 2016 lúc 17:33

bạn ko nhìn à . nó đề toán lớp 9 lù lù kìa

Hieu Ngoc Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 1:01

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 1:04

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 1:05

c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)

Do đó: AD=7,5cm; CD=12,5cm

Trần gia linh
Xem chi tiết
Hoàng Hà
Xem chi tiết

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C

\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C

Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)

Ta có: BEDC là tứ giác nội tiếp

=>\(\widehat{DEC}=\widehat{DBC}\)

=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//D'E'

Kẻ tiếp tuyến Ax của (O')

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{xAB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)

nên \(\widehat{xAB}=\widehat{AED}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//ED

Ta có: Ax//ED

OA\(\perp\)Ax

Do đó: OA\(\perp\)ED

c: Xét (O) có

ΔABA' nội tiếp

A'A là đường kính

Do đó: ΔABA' vuông tại B

=>AB\(\perp\)BA'

Xét (O) có

ΔACA' nội tiếp

A'A là đường kính

Do đó: ΔACA' vuông tại C

=>AC\(\perp\)CA'

Ta có: AC\(\perp\)CA'

BH\(\perp\)AC

Do đó:  BH//A'C

Ta có: AB\(\perp\)BA'

CH\(\perp\)AB

Do đó: CH//BA'

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

=>BC cắt HA' tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HA'

=>H,I,A' thẳng hàng

An Nguyen
Xem chi tiết
Bán Nguyệt
Xem chi tiết
Thục Quyên
Xem chi tiết