Trong mặt phẳng Oxy cho đường tròn C có tâm I(-2;1) và C qua B(1;5). Phép vị tự tâm O tỉ số k=-4 biến đường tròn C thành đường tròn C'. Đường tròn C' có bán kính là
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A − 4 ; 1 , B 2 ; 4 , C(2; -2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
A. I 1 4 ; 1 .
B. I - 1 4 ; 1 .
C. I 1 ; 1 4 .
D. I 1 ; - 1 4 .
Gọi I( x; y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + 8 x + 16 = x 2 − 4 x + 4 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Trong mặt phẳng Oxy, cho ∆ A B C có đỉnh A ( 3;-7 ), trực tâm H ( 3;-1 ), tâm đường tròn ngoại tiếp I ( -2;0 ). Xác định tung độ đỉnh C
A. y C = 1
B. y C = 3
C. y C = -3
D. y C = -1
Gọi B’ là điểm đối xứng với B qua điểm I. Rõ ràng tứ giác AHCB’ là hình bình hành, cho nên B ' C = A H , tức là C = T A H B '
Do B ' ∈ y là đường tròn ngoại tiếp ∆ A B C nên B = ( y' ) = T A H y ⇒ C = y ∩ y '
Dễ dàng lập được phương trình của các đường tròn (y) và (y') lần lượt như sau
x + 2 2 + y 2 = 74 x + 2 2 + y + 6 2 = 74
Tọa độ điểm C là nghiệm của hệ phương trình
x + 2 2 + y 2 = 74 x + 2 2 + y + 6 2 = 74 ⇒ x = - ± 65 y = - 3
Do đó y C = -3
Đáp án C
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(- 4;1); B(2; 4); C(2; -2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
A. I 1 4 ; 1 .
B. I − 1 4 ; 1 .
C. I 1 ; 1 4 .
D. I 1 ; − 1 4 .
Gọi I(x, y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:
I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình: x − 3 2 + y + 1 2 = 9 .
Hãy viết phương trình của đường tròn (C’) là ảnh của (C) qua phép vị tự tâm I(1; 2) tỉ số k = -2
Ta có A(3;−1) là tâm của (C) nên tâm A' của (C') là ảnh của A qua phép vị tự đã cho. Từ đó suy ra A′ = (−3;8). Vì bán kính của (C) bằng 3, nên bán kính của (C') bằng |−2|.3 = 6
Vậy (C') có phương trình: x + 3 2 + y − 8 2 = 36 .
Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tâm I(-4;3), tiếp xúc trục Oy có phương trình là:
Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tâm I(-4;3), tiếp xúc trục Oy có phương trình là
A. x 2 + y 2 - 4 x + 3 y + 9 = 0
B. x + 4 2 + y - 3 2 = 16
C. x - 4 2 + y + 3 2 = 16
D. x 2 + y 2 + 8 x - 6 y - 12 = 0
Trong mặt phẳng tọa độ Oxy cho đường tròn tâm I(2;-2), bán kính R = 4. Viết phương trình đường tròn là ảnh của đường tròn (I;R) qua phép vị tự tâm O, tỉ số 1 2 .
A. x - 4 2 + ( y + 4 ) 2 = 4
B. x - 4 2 + ( y + 4 ) 2 = 64
C. x - 1 2 + ( y + 1 ) 2 = 4
D. x - 1 2 + ( y + 1 ) 2 = 64
Trong mặt phẳng tọa độ Oxy, đường tròn (C) tâm I(-3;4), bán kính R = 6 có phương trình là:
A. (x + 3 ) 2 + (y - 4 ) 2 = 36
B. (x - 3 ) 2 + (y + 4 ) 2 = 6
C. (x + 3 ) 2 + (y - 4 ) 2 = 6
D. (x - 3 ) 2 + (y + 4 ) 2 = 36
Chọn A.
Phương trình đường tròn (C) tâm I(-3;4), bán kính R = 6 là:
[x - (-3) ] 2 + (y - 4 ) 2 = 6 2 ⇒ (x + 3 ) 2 + (y - 4 ) 2 = 36