Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [-3;3] và đồ thị y = f’(x) như hình vẽ. Đặt g x = 2 f x + x 2 + 4 . Biết f(1)=-24. Hỏi g(x) = 0 có bao nhiêu nghiệm thực?
A. 1
B. 4
C. 2
D. 0
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số y = f(x) liên tục trên [a;b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ α ; β ] ∀ x ∈ [ a ; b ] hơn nữa f(u) liên tục trên đoạn [a;b]. Mệnh đề nào sau đây là đúng?
A. ∫ a b f ( u ( x ) ) u ' d x = ∫ u ( a ) u ( b ) f ( u ) d u
B. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
C. ∫ u ( a ) u ( b ) f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
D. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( x ) d x
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [-2;1] thỏa mãn f(0)=1 và f x 2 . f ' x = 3 x 2 + 4 x + 2 Giá trị lớn nhất của hàm số y=f(x) trên đoạn [-2;1] là
A. 2 16 3
B. 18 3
C. 16 3
D. 2 18 3
Ta có
Ta có: f ( 0 ) = 1 ⇒ 1 = 3 C
Xét hàm trên [-2;1]
Ta có
Nhận thấy f ' ( x ) > 0 ∀ x ∈ ℝ ⇒ Hàm số đồng biến trên (-2;1)
Suy ra m a x - 2 ; 1 f ( x ) = f ( 1 ) = 16 3
Chọn đáp án C.
Cho hàm số y = f(x) liên tục trên [a;b] Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ a ; b ] hơn nữa u(x) liên tục trên đoạn [a;b]Mệnh đề nào sau đây là đúng?
Cho hàm số y = f(x) có đạo hàm liên tục trên R, đồ thị của hàm số y = f′(x) như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(x) = f(0) trên đoạn [−3;6] là
A. 4
B. 3.
C. 5.
D. 2.
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Hàm số y= f'(x) có đồ thị như hình vẽ bên dưới:
Số nghiệm thuộc đoạn [-2;6] của phương trình f(x) = f(0) là
A. 5
B. 2
C. 3
D. 4
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [–1;1] thỏa mãn ∫ - 1 1 f ' ( x ) d x = 5 và f(–1) = 4. Tìm f(1).
A. f(1) = –1.
B. f(1) = 1.
C. f(1) = 9.
D. f(1) = –9
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1;4], đồng biến trên đoạn [1;4] và thỏa mãn đẳng thức x + 2 x . f x = f ' x , ∀ x ∈ 1 ; 4 Biết rằng f(1)=3/2 tính I = ∫ 1 4 f x d x
A. I=1186/45
B. I=1174/45
C. I=1222/45
D. I=1201/45
Cho hàm số y=f(x) có đạo hàm y=f’(x) liên tục trên R và đồ thị của hàm số f’(x) trên đoạn [-2;6] như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
A. m a x - 2 ; 6 f x = f - 2
B. m a x - 2 ; 6 f x = f 6
C. m a x - 2 ; 6 f x = m a x f - 1 ; f 6
D. m a x - 2 ; 6 f x = f - 1