Chứng minh:
a/ abcabc chia hết cho 7;11;13
b/ abcdeg chia hết cho 23;29,biết abc=2deg
Chứng minh rằng a b c a b c ¯ chia hết cho 7
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích số. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: a b c a b c ¯ = 1000 a b c ¯ + a b c ¯ = 1001 a b c ¯ Vì 1001 ⋮ 7 ⇒ 1001 a b c ¯ ⋮ 7 ⇒ a b c a b c ¯ ⋮ 7 |
Chứng minh rằng a b c a b c ¯ chia hết cho 7
1) Chứng minh: ab+cd chia hết cho 11 thì abcd chia hết cho 11
2) Chứng minh abcabc chia hết cho 7
1) abcd = ab x 100 + cd
= ab x 99 + ab + cd
Vậy nếu ab + cd chia hết cho 11
Thì abcd chia hết cho 11
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
Chứng minh rằng abcabc + ababab chia hết cho 7
phân tích ra rồi cộng lại sẽ đc số chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
= 201110a+22111b+1001c
= 91.(2210a+221b+11c)
= 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab)= 201110a+22111b+1001c
=> (abcabc+ababab) = 91.(2210a+221b+11c) = 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
7)Chứng minh rằng :
a) abcabc chia hết cho 7,11,13
b) abcdeg chia hết cho 23 và 29 , biết rằng abc=2.deg
8)Chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng minh abcabc chia hết cho 7;cho11;cho13
ta co : abcabc = abc . 1001
vi 1001= 7.13.11
=> abcabc=abc.7.11.13
vì abc.7.11.13 chia hết cho 7;11;13
=> abcabc chia het cho 7;11;13
Chứng minh (abcabc+ ababab) chia hết cho 7
Phân tích ra khác được 1 số chia hết cho7
abcabc+abacab
(=) ax100000+bx10000+cx1000+ax100+b x 10+c+ax100000+bx10000+ax1000+b x 100+ax10+b
(=) ax(100000+100+100000+1000+10) + bx(10000+10+10000+100+1)+ cx(1000+1)
(=)ax201110+bx20111+cx1001
vì 201110 chia hết cho 7 => ax20110 chia hết 7
vì 20111 chia hết cho 7 => bx20111 chia hết cho 7
vi 1001 chia hết cho 7 => cx1001 chia hết cho 7
=> a x 201110+bx20111+cx1001 chia hết cho 7
=>abcabc+ababab chia hết cho 7
chứng minh rằng :
a)abcabc chia hết cho 7 , 11 và 13
b)abcdeg chia hết cho 23 và 29 , biết rằng abc = 2.deg
a)
abcabc=abc.1001
Mà 1001 chia hết cho cả 7 ;11và 13
=>abc.1001 chia hết cho 7;11;13
Hay abcabc chia hết cho 7;11;13
Vậy............................
b)
abcdeg=abc.1000+deg (1)
Thay abc=2.deg vào (1) ta có :
deg.2.1000+deg
=deg.2001
Mà 2001 cùng chia hết ch0 23 và 29
=>deg.2001 chia hết cho cả 23 và 29
Hay abcdeg chia hết cho 23 và 29
Vậy ......................................
1, Chứng minh abcabc chia hết cho 7 ; 11 và 13
2,Cho abc= 3 nhân deg . Chứng tỏ abcdeg chia hết cho 23
1) ta co abcabc=abc.1000+abc
= abc.1001 chia hết cho
vi 1001 chia het cho 7;11;13
=> abc.1001 chia het cho 7;11;13
=> abcabc chia het cho 7;11;13
2) trong câu hỏi tương tự nhé