Viết PT tham số của đường thẳng D đi qua điểm A(-1;2) và vuông góc vs đường thẳng △: 2x-y+4=0
Viết pt tổng quát của đường thẳng d
a) Đi qua điểm M(-2;-5) và song song với đường phân giác góc phần tư thứ nhất
b) Đi qua điểm M(3;-1) và vuông góc với đường phân giác góc phần tư thứ hai
c) Viết pt tham số của đg thẳng d đi qua điểm M(-4;0) và vuông góc với đường phân giác thứ hai
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
Dạng 1 : Viết pt đưởng thẳng d (pt dạng tham số ,tổng quát ,chính tắc nếu có) đi qua 2 điểm A , B
Bài 1 : Viết pt đưởng thẳng d ( pt dạng tham số , tổng quát , chính tắc nếu có ) đi qua 2 điểm A , B biết A(2;1) , B(-4;5)
Dạng 2 : Viets pt đưởng thẳng d ( pt đoạn chẵn ) đi qua 2 điểm A(a;0) , B(0;b) , nằm trên các trục tọa độ với a,b≠0
BÀi 1 : viết pt đưởng thẳng ( pt đoạn chẵn ) đi qua 2 điểm A ,B biết A(3;0) , B(0;5)
Bài2 : viết pt đường thẳng d đi qua M và cùng với 2 trục tọa độ tạo thành một tam giác có diện tích S cho trước biết M(-4;10) , SOAB =2
Bài 1:
\(\overrightarrow{AB}=\left(-6;-4\right)=\left(3;2\right)\)
Phương trình tham số AB là:
\(\left\{{}\begin{matrix}x=2+3t\\y=2+t\end{matrix}\right.\)
Phương trình tổng quát AB là:
-2(x-2)+3(y-1)=0
=>-2x+4+3y-3=0
=>-2x+3y+1=0
=>2x-3y-1=0
Cho A ( 1; 3 ), B( 4; -1 ), (d) x = 2y+1
a, Viết pt đường thẳng qua A, B
b, Viết pt đường thẳng đi qua A và cắt trục hoành tại điểm có tung độ = -1
c, Viết pt đường thẳng qua A và có hệ số góc là 5
d, Viết pt đường thẳng qua A song song với (d)
e, Viết pt đường thẳng qua A vuông góc với (d)
(d): 2y+1=x
=>2y=x-1
=>y=1/2x-1/2
a: Gọi (d1): y=ax+b là phương trình đường thẳng AB
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)
c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm
Vì (d2) có hệ số góc là 5 nên a=5
Vậy: (d2): y=5x+b
Thay x=1 và y=3 vào (d2), ta được:
b+5=3
hay b=-2
d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm
Vì (d3)//(d) nên a=-1/2
Vậy: (d3): y=-1/2x+b
Thay x=1 và y=3 vào (d3), ta được;
b-1/2=3
hay b=7/2
Viết PT tham số của đường thẳng đi qua điểm 0(0;0) và song song vs đường thẳng △: 3x-4y+1=0
Đường thẳng \(\Delta\) nhận \(\left(3;-4\right)\) là 1 vtpt nên nhận \(\left(4;3\right)\) là 1 vtcp
Do d song song \(\Delta\) nên d cũng nhận \(\left(4;3\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)
14. Trong mặt phẳng toạ độ Oxy , cho hai điểm A(3;-4) , B(0;6). Viết pt tham số của đg thẳng AB.
15. Trong mặt phẳng toạ độ Oxy , viết pt tham số của đg thẳng d đi qua điểm A(0;-4) và song song vs đg thẳng denta có pt tham số : x = 2018 + 2t ; y = 10 - t
18. Trong mặt phẳng toạ độ Oxy , lập pt tổng quát của đg thẳng d biết d đi qua M(-1;0) và có vectơ chỉ phương v = (2;3)
19. Trong mặt phẳng toạ độ Oxy , lập pt tổng quát của đg thẳng d biết d đi qua điểm A(-2;4) và B(1;0).
14.
\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)
15.
Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)
18.
d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt
Phương trình d:
\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)
19.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;1),B(4;-2) và đường thẳng d: -x+2y+1=0. a) Viết phương trình tham số của Δ đi qua A song song với đường thẳng d b) Viết phương trình tổng quát của Δ đi qua B và vuông góc với đường thẳng d c) Viết phương trình đường tròn có bán kính AB
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
Trong mặt phẳng Oxy cho A (4;1), B (-2;3), C (5;-1). a) Viết phương trình tham số và trình tổng quát của đường thẳng đi qua hai điểm A,C b) Viết phương trình tham số và trình tổng quát của đường thẳng A và vuông góc với B,C c) Viết phương trình tham số và trình tổng quát của đường thẳng qua A và song song với đường thẳng d : 2x - y + 3 = 0
Cho 2 điểm A(1;-2) ; B(0;4) a. Viết phương trình tham số của đường thẳng đi qua hai điểm A và B B. Viết phương trình tổng quát của đường thẳng đi qua hai điểm A và B
a: vecto AB=(-1;6)
=>VTPT là (6;1)
Phương trình tham số là;
x=1-t và y=-2+6t
b: PTTQ là:
6(x-1)+1(y+2)=0
=>6x-6+y+2=0
=>6x+y-4=0
viết phương trình tham số của đường thẳng d đi qua hai điểm A(2;5) và B(4;-1) . Tính hệ số góc của đường thẳng d
\(\overrightarrow{AB}=\left(2;-6\right)=2\left(1;-3\right)\) nên đường thẳng AB nhận \(\left(1;-3\right)\) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=2+t\\y=5-3t\end{matrix}\right.\)
Hệ số góc: \(k=\frac{-3}{1}=-3\)