Bài 1: Cho biểu thức A=
( x khác 0; x khác 5)
a) rút gọn bt A
b) Tìm các giá trị nguyên của x để B=A.x+1/x-1 có giá trị nguyên
Bài 5: Cho biểu thức B = x2/ 5x + 25 + 2( x + 5)/ x + 50 +5x / x (x + 5 ) với x khác ( -5 , 0 )
a, rút gọn biểu thức B
b, tính giá trị của biểu thức tại x = -2
a) Ta có: \(B=\dfrac{x^2}{5x+25}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10\left(x+5\right)^2}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+100x+250+250+25x}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+125x+500}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+5x^2+5x^2+25x+100x+500}{5x\left(x+5\right)}\)
\(=\dfrac{x^2\left(x+5\right)+5x\left(x+5\right)+100\left(x+5\right)}{5x\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x^2+5x+100\right)}{5x\left(x+5\right)}\)
\(=\dfrac{x^2+5x+100}{5x}\)
b) Thay x=-2 vào biểu thức \(B=\dfrac{x^2+5x+100}{5x}\), ta được:
\(B=\dfrac{\left(-2\right)^2+5\cdot\left(-2\right)+100}{-5\cdot2}=\dfrac{4+100-10}{-10}=\dfrac{94}{-10}=-\dfrac{94}{10}=\dfrac{-47}{5}\)
Vậy: Khi x=-2 thì \(B=-\dfrac{47}{5}\)
Bài 1:Phân tích đa thức thành nhân tử\
a)2(x+1)-3y(x+1) b)x^2-5x+4
Bài 2:Tìm x
a)x(x-3)+7x-21=0 b)(x-2)^2+x(3-x)=6
Bài 3
A=x-2/x và B=x/x-2-2x/x^2-4 (với x khác 0,x khác cộng,trừ 3)
a)Tính giá trị của A với x=23
b)Cho biểu thức P=A.B.Hãy rút gọn biểu thức P
c)Tìm giá trị của x để P=4
Phân tích đa thức thành nhân tử
a) 2( x + 1 ) - 3y( x + 1 ) = ( x + 1 )( 2 - 3y )
b) x2 - 5x + 4 = x2 - x - 4x + 4 = x( x - 1 ) - 4( x - 1 ) = ( x - 1 )( x - 4 )
Tìm x
a) x( x - 3 ) + 7x - 21 = 0
<=> x( x - 3 ) + 7( x - 3 ) = 0
<=> ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
b) ( x - 2 )2 + x( 3 - x ) = 6
<=> x2 - 4x + 4 + 3x - x2 = 6
<=> -x + 4 = 6
<=> -x = 2
<=> x = -2
\(A=\frac{x-2}{x}\)và \(B=\frac{x}{x-2}-\frac{2x}{x^2-4}\)( x ≠ 0 ; x ≠ ±3 )
a) Tại x = 23 ( tmđk ) => \(A=\frac{23-2}{23}=\frac{21}{23}\)
b) P = A.B
\(=\frac{x-2}{x}\times\left(\frac{x}{x-2}-\frac{2x}{x^2-4}\right)\)
\(=\frac{x-2}{x}\times\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2x}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{x-2}{x}\times\frac{x^2+2x-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{1}{x}\times\frac{x^2}{x+2}=\frac{x}{x+2}\)
Để P = 4 => \(\frac{x}{x+2}=4\)
=> 4( x + 2 ) = x
=> 4x + 8 - x = 0
=> 3x + 8 = 0
=> x = -8/3 ( tmđk )
Bài 1: Rút gọn các biểu thức sau: a)√(5+2√5)² - √5 ______ √5+2 b) x-2 √xy + y _______________ X - Y (x khác y , x > hoặc = 0 , y > hoặc = 0 )
b: \(x-2\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2\)
Cho biểu thức : M=1-2x/ (x+1)(x-2) + 1/ x+1 + 2/ (x-2) (với x khác -1, x khác 2). a, rút gọn biểu thức M . b, tìm tất cả các giá trị của x để -4M>0
Cho biểu thức: A= (1/ Vx +1) + (x/Vx-x) với X>0; X khác 1
a, rút gọn biểu thức
b, tính x để A=2017
Bài 1: cho phân thức A= x^2-3x-4/x^2-8x+16
a Tìm ĐKXĐ của A
b, Tìm giá trị của x để A=0
Bài 2
a, chứng minh với mọi số tự nhiên n khác 0, phân số P= 5n+2/6n^2+5n+1
b, hãy phát biểu bài toán trên dưới dạng khác
Thank các bạn
Cho biểu thức: x-\(\dfrac{x-1}{2}\) +\(\dfrac{x-1}{3}\) + \(\dfrac{x-1}{2016}\) = 0 (với x khác 3 và x khác -3) và ). a)Rút gọn biểu thức A.
b) Tính Q=x2-7x+2021 biết thỏa mãn A= \(-\dfrac{2}{3}\)
Cho biểu thức:
A = x + 3 x x + 1 - x - 3 x x - 1 với x > 0, x khác 1
a) Rút gọn A.
Với x > 0;x ≠ 1 ta có:
A = x + 3 x x + 1 - x - 3 x x - 1
= x + 3 x - 1 - x - 3 x + 1 x x - 1 x + 1 = x + 2 x - 3 - x - 2 x - 3 x x - 1 = 4 x x x - 1 = 4 x - 1
Bài 1: Cho a > b>0 thoản mãn điều kiện 3a2 + 3b2 = 10ab
Tính P= a+b / a-b
Bài 2: Cho biểu thức
A= ( 2xy/ x2-y2 + x-y/ 2x+2y)* 2x/x+y - y/ x-y
Điều kiện : x khác y , -y ; x khác 0
Rút gọn A