Trong không gian Oxyz, cho đường thẳng Δ; x = 1 + t, y = 2 + t, z = 1 + 2t và cho điểm M(2;1;4). Hình chiếu vuông góc của điểm M trên đường thẳng Δ là:
A. H 1 (1; 2; 1)
B. H 2 (0; 1; -1)
C. H 3 (2; 3; 3)
D. Đáp án khác
Trong không gian Oxyz, cho đường thẳng Δ vuông góc với mặt phẳng α : x + 2 z + 3 = 0 . Một véctơ chỉ phương của Δ là
A. b → 2 ; - 1 ; 0
B. v → 1 ; 2 ; 3
C. a → 1 ; 0 ; 2
D. u → 2 ; 0 ; - 1
Trong không gian Oxyz, cho đường thẳng Δ: x = 1 + 2, y = 2 + t, z = 1 + 2t và điểm M(2; 1; 4). Khoảng cách từ M đến đường thẳng Δ là:
A. 5
B. 3
C. 5
D. Đáp án khác
Trong không gian Oxyz, cho đường thẳng Δ : x = 1 + 3 t , y = 2 t , z = 3 + t (t∈R). Một vectơ chỉ phương của Δ có tọa độ là
A. (-3;-2;-1).
B. (1;2;3).
C. (3;2;1).
D. (1;0;3).
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1;1;3) và hai đường thẳng Δ : x - 1 3 = y + 3 2 = z - 1 1 , Δ ' : x + 1 1 = y 3 = z - 2 . Phương trình nào dưới đây là đường thẳng qua M và vuông góc với Δ và Δ ' .
A. x + 1 - 1 = y - 1 1 = z - 1 3
B. x - 1 = y - 1 1 = z - 3 1
C. x + 1 - 1 = y - 1 - 1 = z - 3 1
D. x + 1 - 1 = y - 1 1 = z - 3 1
Trong không gian Oxyz cho đường thẳng Δ có phương trình x − 2 1 = y + 3 2 = z − 1 3 . Tìm phương trình tham số của đường thẳng d là hình chiếu vuông góc của Δ trên mặt phẳng O y z .
A. x = 0 y = 3 + 2 t z = − 1 + 3 t
B. x = 0 y = − 3 + 2 t z = 1 + 3 t
C. x = − 2 + t y = 0 z = 0
D. x = 2 + t y = 0 z = 0
Đáp án B.
Δ : x − 2 1 = y + 3 2 = z − 1 3
Lấy M 2 ; − 3 ; 1 và N 3 ; − 1 ; 4 là hai điểm thuộc Δ.
⇒ M ' 0 ; − 3 ; 1 và N ' 0 ; − 1 ; 4 lần lượt là hình chiếu của hai điểm M; N trên mặt phẳng (Oxy)
⇒ u d → = M ' N ' → = 0 ; 2 ; 3 ⇒ d : x = 0 y = − 3 + 2 t z = 1 + 3 t
Trong không gian Oxyz, cho điểm A (1; -1; 1) và hai đường thẳng ∆ : x - 1 2 = y 1 = z - 3 - 1 , ∆ ' : x 1 = y + 1 - 2 = z - 2 1 .
Phương trình đường thẳng đi qua điểm A và cắt cả hai đường thẳng Δ, Δ' là:
Chọn C
Gọi d là đường thẳng cần tìm.
Đường thẳng cần tìm qua A và nhận là véc tơ chỉ phương nên có phương trình:
Trong không gian Oxyz, cho đường thẳng d: x = 1 + t, y = 2 -2t, z = -3. Viết phương trình tham số của đường thẳng Δ nằm trong mặt phẳng (Oxy), song song với d sao cho khoảng cách giữa hai đường thẳng d và Δ đạt giá trị nhỏ nhất
A. d: x = 1 + t, y = 2 -2t, z = 0
B. d: x = 1 + t, y = -2t, z = -3
C. d: x = t, y = 2 - 2t, z = -3
D. d: x = 1, y = 2, z = -3 + t
Đáp án A
*Gọi (Q) là mặt phẳng chứa d và vuông góc với mặt phẳng (Oxy). Để khoảng cách giữa hai đường thẳng d và ∆ nhỏ nhất thì ∆ chính là giao tuyến của hai mặt phẳng (Oxy) và mp (Q).
* Mặt phẳng (Oxy) có phương trình là z = 0 có VTPT n Oxy → = (0; 0; 1).
Đường thẳng d đi qua A(1;2; -3) và có VTCP u d → = (1; -2; 0)
Suy ra, VTPT của (Q) là n Q → = [ u d → ; n Oxy → ] = (2; 1; 0)
Phương trình mặt phẳng (Q) là: 2(x - 1) + 1(y - 2) + 0(z + 3) = 0
Hay 2x + y -4 =0
* Đường thẳng ∆ cần tìm là giao tuyến của hai mặt phẳng (Oxy) và (Q). Tập hợp các điểm thuộc ∆ là nghiệm hệ phương trình:
* Đặt x = 1 + t thay vào (1) ta được: y = 4 - 2x = 4 - 2(1 + t) = 2 - 2t
Suy ra, phương trình tham số của đường thẳng ∆ là:
Trong không gian Oxyz, đường thẳng Δ qua điểm M(1−2m;2+ m;1) và vuông góc với mặt phẳng (Oxy) sao cho khoảng cách từ gốc toạ độ O đến đường thẳng Δ nhỏ nhất có phương trình là
A. x = 1 y = 2 z = 1 + t
B. x = 1 + t y = 2 + t z = 1
C. x = 5 y = 0 z = 1 + t
D. x = 3 y = 1 z = 1 + t
Trong không gian Oxyz, cho điểm I 2 ; 5 ; 3 và đường thẳng d : x - 1 2 = y 1 = z - 2 2 . Đường thẳng Δ đi qua I và vuông góc với hai đường thẳng OI, d có phương trình là
A. x + 2 7 = y + 5 - 2 = z + 3 - 8
B. x - 2 - 8 = y - 5 7 = z - 3 - 2
C. x + 2 7 = y + 5 2 = z + 3 - 8
D. x - 2 7 = y - 5 2 = z - 3 - 8
Chọn đáp án D.
Cách 2: Nhận thấy tọa độ điểm I không thỏa mãn phương trình ở phương án A và phương án C nên loại hai phương án này.
d có một vectơ chỉ phương là
Đường thẳng có phương trình trong phương án B có vectơ chỉ phương