Cho m-n=3; n khác 5 và khác -4. tính gtrị của bth \(A=\frac{m-8}{n-5}-\frac{4m-n}{3m+3}\)
cho m,n thuộc N, m chia hết cho 3 dư 1, n chia hết cho 3 dư 2. chứng minh m,n chia hết cho 3 dư 2
sao lại m chia hết cho 3 dư 1 ? vừa chia hết lại vừa có dư là sao ? -__- xem lại đề đj
m chia het cho 3 du1 dat la x
n chia het cho3 du ?
nhan ra di
cho m+n+p=190 (m,n,p thuộc Z). chứng minh : m^3+n^3+p^3-4 chia hết cho 6
Cho m,n là hai số nguyên dương thỏa mãn điều kiện: 3m + 5n chia hết cho 8. CMR: 3n + 5m chia hết cho 8.
Nhận xét lời giải sau:
Xét tổng: 3^m + 5^n + 3^n + 5^m
= ( 3^n + 5^m ) + ( 3^n +5^n )
= ( 3 + 5 )Q + (3+5)P
= 8Q + 8P chia hết cho 8
=> 3^m+5^n+3^n+5^m chia hết cho 8
=> 3^n+5^m chia hết cho 8 (đpcm)
1.Tìm n biết n+2 chia hết cho n2+1
2.Tìm m và n cho
a.2m+5=n.(m-1)
b.3m+3n=3m+n-3
2)
a)Ta có: 2m+5=n.(m-1)
=> 2m+5=nm-n
=>2m+5-nm+n=0
=>(2-n).m+5+n=0
=>(2-n).m-(2-n)+5+2=0
=>(2-n).(m-1)+7=0
=>(2-n).(m-1)=-7=-1.7=-7.1
Ta có bảng sau:
2-n | 1 | -7 | -1 | 7 |
n | 1 | 9 | 3 | -5 |
m-1 | -7 | 1 | 7 | -1 |
m | -6 | 2 | 8 | 0 |
Vậy (n,m)=(1,-6),(9,2),(3,8),(-5,0)
Cho số nguyên dương m,n sao cho (3^m+5^n) chia hết cho 8. CMR: (3^n+5^m) chia hết cho 8.
cho 3 số nguyên dương m, n, p thỏa mãn m+n+p = 1996^1996. Tìm số dư khi chia m^3 + n^3 + p^3 cho 3
nói thật mk ko biết
mk cx chưa từng lm
nhưng hãy tk cho mk hihihi
1.Chứng minh 2n^2 .(n+1) - 2n(n^2 + n -3 ) chia hết cho 6 với mọi số nguyên n
2.Chứng minh n(3-2n)-(n-1)(1+4n)-1 chia hết cho 6 với mọi số nguyên n
3.Cho biểu thức : (m^2 -2m+4)(m+2)-m^3 + (m+3)(m-3)-m^2-18
Chứng minh giá trị của P khôgn phụ thuộc vào m
AI có thể giúp tớ vs đc k ạ tớ sẽ stick cho ai tl đúng nhé
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a, <=> 2n[ n(n+1)-n2-n+3)
<=> 2n( n2+n-n2-n+3)
<=> 6n chia hết cho 6 với mọi n nguyên
b, <=> 3n-2n2-(n+4n2-1-4n) -1
<=> 3n-2n2-n-4n2+1+4n-n-1
<=> 6n-6n2
<=> 6(n-n2) chiiaia hhehethet cchchocho 6
c ,<=> m3-23-m3+m2-32-m2-18
<=>-35 => ko phụ thuộc vào biến
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
CMR m,n là số nguyên thì m^3+n^3 chia hết cho 6 khi m+n chia hết cho 6
CM : nếu m^2 + n^2 chia hết cho 3 thì m, n chia hết cho 3?
"Nếu m, n là 2 số nguyên dương và mỗi số đều chia hết cho 3 thì tổng m^2 + n^2 cũng chia hết cho 3"
CM định lí đảo của định lí trên.
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
ko bt đúng ko nữa hehe
Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3
Ta có: m^2+n^2= m^2-n^2 + 2n^2
=(m-n)(m+n) + 2n^2
Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3
Và: n chia hết cho 3 nên 2n^2 chia hết cho 3
Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3
Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3
Đúng thì t.i.c.k đúng đi bn