cho tam giác abc cân tại a. phân giác be cắt ac tại e biết ab=15 cm; bc=10 cm
a) tính ae; ec
Cho tam giác ABC vuông tại A . Kẻ BI là phân giác của góc ABC (I thuộc AC), kẻ ID vuông tại BC tại
D . Tia DI cắt BA tại E .
1. Chứng minh: AB = BD .
2. Chứng minh: tam giác EBC cân.
3. Chứng minh:AD//EC.
4. Tính BE biết AB = 6 cm; AC = 8 cm .
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
Cho tam giác ABC, đường phân giác trong AD. Trên AD, lấy M, BM cắt AC tại E, CM cắt AB tại F.CMR: Nếu BE=CF thì tam giác ABC cân
cho tam giác ABC vuông tại A,AB=9cm; AC=12cm.Trên tia BC lấy D sao cho BD=BA.Kẻ đoạn thẳng D vuông với BC. Đoạn thẳng này cắt AC tại E, cắt AB tại K
a) tính BC?
b) cm tam giác ABE=tam giác DBE => BE là tia phân giác của góc ABC
c)AC song song DK
d)kẻ đoạn thẳng A vuông góc với BC tại H, đoạn thẳng này cắt BE tại M. CM tam giác AME cân
cho tam giác abc cân tại a có bc=2 cm, ab=4cm, đường phân giác góc b cắt ac tại e. đường vuông góc với be tại b cắt ac kéo dài ở p. tính pc
Tam giác ABC vuông tại A. Vẽ đường cao AH. Biết AB=3cm, AC=4cm. Đường phân giác góc B cắt AH tại E, cắt AC tại F. CM: Tam giác AEF cân.
Dễ thôi
ta có\(\Delta HBE\infty\Delta ABF\)(\(\widehat{BHE}=\widehat{BAF}=90^0\);\(\widehat{EBH}=\widehat{ABF}\))
\(\Rightarrow\widehat{BEH}=\widehat{AFB}\)
Lại có:\(\widehat{BEH}=\widehat{AEF}\)
\(\Rightarrow\widehat{AFE}=\widehat{AEF}\)
Vậy tam giác AEF cân tại A
Bài 1: Cho tam giác ABC cân tại A, đường phân giác góc B cắt AC tại D, biết AB = 15 cm, BC = 10cm
a) Tính AD, DC.
b) Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC
a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)
b, Ta có BD là pg, mà BD vuông BE
nên BE là pg ngoài tam giác ABC
\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
Cho tam giác ABC vuông tại A . Kẻ BI là phân giác của góc ABC (I thuộc AC), kẻ ID ^ BC tại
D . Tia DI cắt BA tại E .
1. Chứng minh: AB = BD .
2. Chứng minh: DEBC cân.
3. Chứng minh:AD//EC.
4. Tính BE biết AB = 6 cm; AC = 8 cm .
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
cho tam giác abc cân tại a vẽ phân giác góc b cắt ac tại d phân giác góc c cắt ab tại e . i là giao điểm của bd và ce . cm a , tam giác ibc cân. b, bd=ce
cho tam giác ABC vuông tại A.Vẽ ra phía ngoài tam giác đó tam giác ABD vuông cân tại B,tam giác ACE vuông cân ở C.CD cắt AB tại M,BE cắt AC tại N
a)CM: ba điểm D,A,E thẳng hàng
b)Tính DM biết AM = 3cm,AC=4cm,MC=5cm
c)CM:AN = AM
giúp mk với sắp ăn tết r mak chx xong bài tập