Cho a = 11...1; b= 100...011 ( n chữ số 1; n - 2 chữ số 0; n ≥ 2)
CMR: ab + 4 là số chính phương
CÂu 1: A=1+11+11^2++11^3+11^4+...+11^9
CMR:
A chia hết cho 60
Câu 2: Cho A = 13!-1!
CMR: A chi hết cho 5, A chia hết cho 155
Cho A= 11^9 + 11^8 + 11^7 + .... + 11+1. CMR A chia hết cho 5
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ai kết bạn đi
1. Cho a = 11....11 ( 2018 c/s 1) b = 44...44 ( 1009 c/s 4 ) chứng minh a+b+1 là số chính phương
2.Cho a = 11...11 (2n c/s 1) b = 11....111 (n+1 c/s 1) c = 66....66(n c/s 6) chứng minh a+b+c+8 là số chính phương
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
Cho A=11^9+11^8+11^7+....+11+1.Chứng minh rằng A chia hết cho 5
=>11A=11^10 + 11^9 +... +11^2+11
=>10A=11^10-1
=>A=(11^10-1) :10
Ta thấy 11^10 tận cùng =1
=>1-1=0=>0 chia hết cho 5
a/ a-b=4 và 7a5b1 chia hết cho 3
b/A=11^9+11^8+11^7+...+11+1 chia hết cho 5
c/ Cho B=13! -11!
cho A=11^9+11^8+11^7+…+11+1
chứng minh rằng A chia hết cho 5
Cho A = 11^9+11^8+11^7+.........+11+1 Chứng minh rằng A chia hết cho 5
\(A=1+11+...+11^9\)
\(11A=11+11^2+...+11^{10}\)
\(11A-A=\left(11+11^2+...+11^{10}\right)-\left(1+11+...+11^9\right)\)
\(10A=11^{10}-1\)
Ta có lũy thừa của 11 luôn có dạng ...1
=> 1110 - 1 có dạng ...0 chia hết cho 5 ( đpcm )
\(11A=11.\left(11^9+11^8+11^7+...+11+1\right)\)
\(11A-A=11^{10}+11^9+11^8+...+11^2+11\)
\(10A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(10A=11^{10}-1\)
\(A=\frac{11^{10}-1}{10}\)
11^10 có CSTC là 1=>11^10-1 có CSTC là 0
\(=>\frac{11^{10}-1}{5}⋮5=>A⋮5\)
\(A=11^9+11^8+11^7+...+11+1\)\(\)
\(\Rightarrow11A=11^{10}+11^9+11^8+...+11^2+11\)
\(\Leftrightarrow11A-A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(\Rightarrow10A=11^{10}-1\)
\(\Rightarrow A=\left(11^{10}-1\right):10\)
Ta thấy 11\(^{10}\)có tận cùng là 1
=> 11\(^{10}\)-1 có tận cùng là 0
\(\Leftrightarrow\)(11\(^{10}\)-1):10 có tận cùng là 0
\(\Rightarrow\left(11^{10}-1\right):10⋮5\)
\(\Leftrightarrow A⋮5\left(đpcm\right)\)
Cho A=119+118+117+.....+11+1.CMR A chia hết cho 5
câu hỏi tương tự có nhiều dạng này lắm bạn ạ
cho A=1+11+11^+11^3+...+11^9
Hỏi A có chia hết cho 5 ko
Cho A=11^9+11^8+......+11+1(CMR A chia hết cho 5)
ta co' tinh chat cua luy thua cua 11 nhu sau:
So cuoi cung cua 11^x luon = 1.
Tu` do' ta de dang thay':A= 11^9+11^8+...+11+1 cac so hang deu co so tan cung = 1 va co 10 so hang do do' so' tan cung cua tong?
nay` la` 0. Vay A chia het cho 5.
Ta có:
A = (119 + 118 + 117 + 116 + 115) + (114 +113 + 112 + 11 + 1)
A = Chia hết cho 5 + Chia hết cho 5
=> A chia hết cho 5
=>11A=1110+119+118+...+112+11
=>11A-A=(1110+119+...+112+11)-(119+118 +...+11+1)
=> 10A= 1110-1
=> A = (1110-1):10
Ta thấy 1110có tận cùng là 1 =>1110-1 có tận cùng là 0 => (1110-1) :10 có tận cùng là 0 chia hết cho 5
Vậy Achia hết cho 5
Tích cho mính nhé :)