CMR:nếu a/b=c/d thì a)5a+3b/5a-3b ; b)7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
CMR:Nếu a và b là 2 số nguyên tố cùng nhau thì : A=8a+3b và B=5a+2b nguyên tố cùng nhau
c/m: nếu a/b=c/d thì:
a, 5a+3b/5a-3b = 5c+3d/5c-3d
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
CMR nếu a/b=c/d thì 5a+3b/5a-3b = 5c+3d/5c-3d ( bằng 3 cách )
CM nếu a/b=c/d thì (5a+3b)/ (5a-3b)= (5c+3d)/(5c-3d)
Chứng minh đẳng thức:Nếu a/b = c/d thì 5a + 3b / 5a - 3b = 5c + 3d / 5c - 3d
Chứng minh đẳng thức: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Khi đó:
$\frac{5a+3b}{5a-3b}=\frac{5bk+3bk}{5bk-3bk}=\frac{8bk}{2bk}=4(1)$
$\frac{5c+3d}{5c-3d}=\frac{5dk+3dk}{5dk-3dk}=\frac{8dk}{2dk}=4(2)$
Từ $(1); (2)$ suy ra điều phải chứng minh.
c/m: Nếu a/b=c/b=c/d thì
a) 5a+3b/5a-3b=5c+3d/5c-3d
Giúp mình nhanh đi
Chứng minh rằng a/b=c/b thì 5a+3b/5a-3b=5c+3d/5c-3d
Ta có: \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)(Tính chất dảy tỉ số bằng nhau)
=>\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
NHỚ **** CHO TỚ NHÉ