Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
Cho ƯCLN(a,B)=1
CMR ƯCLN(a,a+b/2)=1(a ,b là số lẻ)
1. Cho a;b;c lẻ
CM: ƯCLN (a;b;c)=ƯCLN (a+b/2;b+c/2;a+c/2)
2. Tìm ƯCLN (1995^4+3.1995^2+1;1995^3+2.1995)
3.CMR: n!+1 và (n+1)!+1 nguyên tố cùng nhau
CMR : ƯCLN(a, b) = ƯCLN(a, a+b)
ƯCLN(a, b) = ƯCLN(a, \(\frac{a+b}{2}\)) (a, b lẻ)
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
cho ƯCLN(a;b)=1 và a.b = c^2 ( c là số nguyên dương). CMR a,b là số chính phương.
Cho \(a,b,c\) là các số lẻ. Chứng minh rằng:
\(ƯCLN\left(a;b;c\right)=ƯCLN\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
Gọi d là ƯCLN(a;b;c) =>d lẻ vì các số a,b,c là các số lẻ (1)
(+) a chia hết cho d
(+) b chia hết cho d
=>a+b chia hết cho d (2)
Mặt khác vì a,b là các số lẻ nên a+b sẽ chia hết cho2 (3)
Từ (1);(2) và (3) =>\(\frac{a+b}{2}\) phải chia hết cho d
C/m tương tự ta có \(\frac{b+c}{2};\frac{c+a}{2}\) cũng chia hết cho d
=>đpcm
CMR:
1.ƯCLN(a,b)=1 thì ƯCLN(a+b,a-b)=1 hoặc 2
2.a,b,c là số lẻ thì ƯCLN(a,b,c)= ƯCLN(a+b/2;b+c/2;c+a/2)
3.Cho ƯCLN(a,b)=1.Tìm ƯCLN (11a+2b;18a+5b)
CMR:
a) (a-b+c)3+(a+b-c)3+(-a+b+c)3 chia hết cho 3 (a+b+c chia hết cho 3)
b) với a, b, c là các số tự nhiên có đúng 1 số lẻ và 2 số chẵn. CMR:
(a+b+c)3-(a-b+c)3-(a+b-c)3-(-a+b+c)3 chia hết cho 96