Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
Cho \(a,b,c\) là các số lẻ. Chứng minh rằng:
\(ƯCLN\left(a;b;c\right)=ƯCLN\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
C/m rằng:ƯCLN(a,b,c)=ƯCLN\(\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
(a,b,c là số lẻ)
\(Cho\)a , b , c là các số lẻ . Chứng minh rằng :
\(ƯCLN\left(a,b,c\right)=\left(\frac{a+b}{2},\frac{b+c}{2},\frac{c+a}{2}\right)\)
CMR : ƯCLN(a, b) = ƯCLN(a, a+b)
ƯCLN(a, b) = ƯCLN(a, \(\frac{a+b}{2}\)) (a, b lẻ)
1. Cho a;b;c lẻ
CM: ƯCLN (a;b;c)=ƯCLN (a+b/2;b+c/2;a+c/2)
2. Tìm ƯCLN (1995^4+3.1995^2+1;1995^3+2.1995)
3.CMR: n!+1 và (n+1)!+1 nguyên tố cùng nhau
CMR:
1.ƯCLN(a,b)=1 thì ƯCLN(a+b,a-b)=1 hoặc 2
2.a,b,c là số lẻ thì ƯCLN(a,b,c)= ƯCLN(a+b/2;b+c/2;c+a/2)
3.Cho ƯCLN(a,b)=1.Tìm ƯCLN (11a+2b;18a+5b)
Cho ƯCLN(a,B)=1
CMR ƯCLN(a,a+b/2)=1(a ,b là số lẻ)
Với a ; b thuộc N . Chứng minh rằng :
ƯCLN ( a ; b ) = ƯCLN ( a ; \(\frac{a+b}{2}\) ) với a ; b là số lẻ .
MK ĐANG CẦN GẤP . AI TRÌNH BÀY RÕ RÀNG . MK SẼ TICK 3 CÁI .
CẢM ƠN CÁC BẠN !!