Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a + b + c ≠ 0; a = 2005.
Tính b, c.
Cho a,b,c>0 và $\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}$
Tính P = $\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}$
cho 3 số a,b,c khác 0 và đôi một khác nhay và thỏa mãn a+b+c=0. tính giá trị biểu thức P= \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Cho a,b,c khác nhau và khác 0 thỏa mãn a + b + c =0 . Tính giá trị của biểu thức
P = \((\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})\)
Cho a;b;c đôi một khác nhau và khác 0. Chứng minh rằng:
Nếu a + b + c = 0 thì \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\times\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
tên sai kìa,EKAWADA CONAN mà
Cho a, b, c khác 0 và khác nhau thỏa mãn a + b + c = 0. Chứng minh rằng :
\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
a, Cho :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a,b,c khác 0 và a+b+c khác 0 . So sánh a, b, c .
b, Cho : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x,y,z khác 0 ; x + y + z khác 0 . Tính \(\frac{x^{333}.y^{666}}{z^{999}}\)
c, Cho : ac = b2 ; ab = c2 ( a+b+c khác 0 ) . Tính \(\frac{b^{333}}{c^{111}.a^{222}}\)
a, Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
b, Áp dung TCDTSBN ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)
ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b ; a = c ; c = a => a=b=c
b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = z; z = x => x = y = z
\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c,
Theo đề bài:
ac = bb <=> bb/a = c
ab = cc <=> ab/c = c
=> bb/a = ab/c
=> bbc = aab
=> bc = ab
Mà cc = ab => cc = bc => b = c
ac/b = b
cc/a = b
=> ac/b = cc/a
=> aac = bcc
=> aa = bc
Mà bc = cc => aa = cc => a = c
=> a = b = c
\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
Cho\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)và 2 trg 3 số đôi một khác 0.cm:\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Cho em hỏi bài này ạ \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{c+b}=0\)và a+b+c khác 0.Chứng minh rằng \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{c+b}=1\)
Ta có :\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
=> \(a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)=0\)
=> \(a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{a+c}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)=0\)
=> \(a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)=0\)
=> \(a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{a+c}-b+c.\frac{a+b+c}{a+b}-c=0\)
=> \(\left(a+b+c\right).\frac{a}{b+c}+\left(a+b+c\right).\frac{b}{a+c}+\left(a+b+c\right).\frac{c}{a+b}-\left(a+b+c\right)=0\)
=> \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1\right)=0\)
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1=0\left(\text{Vì }a+b+c\ne0\right)\)
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)(đpcm)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Cho ba số nguyên a,b,c đôi một khác nhau và khác 0 thỏa mãn:a+b+c=0
Tính giá trị của \(P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)