Chứng tỏ ab+ba=11×(a+b); a,b thuộc A ={1;2;3;...;8;9}
TRÊN ĐẦU ab có gạch ngang nha
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng tỏ
a/ ab +ba chia hết cho 11
b/ ba-ab chia hết cho 9 (b>a)
a.Ta có:ab+ba=a.10+b + b.10+a=a(10+1) + b(10 +1) = a.11+b.11=11(a+b)
=> ab+ba chia hết cho 11
b.Ta có:ba-ab=(b.10+a)-(a.10+b)=b.10 + a - a.10-b=b(10-1) - a(10-1)=b.9 - a.9=9(b-a)
=>ba-ab chia hết cho 9
chứng tỏ rằng a+b chia hết cho 2
chứng tỏ rằng ab+ba chia hết cho 11
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm
a)chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b)chứng minh rằng ab+ba chia hết cho 11
a) ab(a+b) = a2b + ab2 = 2ab2 chia hết cho 2
b)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
chứng tỏ rằng
ab + ba chia hết cho 11
ab - ba chìa hết cho 9 ( a > b )
Ta có : ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) chia hết cho 11
Ta có: câu 1 : ab + ba = 10a + b +10b +a
=11a +11b =11(a+b)
=> ab + ba chia hết cho 11
câu 2 : ab - ba = 10a +b -10b -a
=9a - 9b =9(a-b) với điều kiện a >b
=> ab - ba chia hết cho 9
Cách làm của cô tớ:
Ta có: ab + ba
=( 10 x a + b ) + (10 x b + a)
= 11a + 11b
= > 11 ( a+ b) chia hết cho 11
a,b là hai chữ số khác 0. chứng tỏ (ab+ba) chia hết cho 11
\(\overline{ab}\) + \(\overline{ba}\) = \(a\times\) 10 + \(b\) + \(b\times\) 10 + \(a\) = \(a\times11\) + \(b\times\)11
\(\overline{ab}\) + \(\overline{ba}\) = (\(a\) + \(b\))\(\times\) 11
Vì 11 ⋮ 11 ⇒ (\(a+b\))\(\times\) 11 ⋮ 11 ⇒ \(\overline{ab}\) + \(\overline{ba}\) ⋮ 11 (đpcm)
ab +ba=a x10 +b +b x10 +a=a x[10+1] + b x[10+1]
=a x 11 + b x 11=[a+b] x11
mà : 11chia hết cho 11 nên 11:11=[a+b]
suy ra : a+b có thể là bất kì số gì khác 0
a,b là hai chữ số khác 0. chứng tỏ (ab+ba) chia hết cho 11
Bởi vì a,b là 2 chữ số khác 0 nên:
ab+ba đặt tính rồi tính ta có
ab Ta có: a+b b+a nên a+b=b+a
+ Ví dụ: cho a=2,b=1
ba Ta có: 21+12=33(chia hết cho 11)
_____