Toán lớp 10 vector
Cho tứ giác ABCD,
a) Tìm vị trí của M; N sao cho:
AM= AB + AC - BC
AN= AB - AC + AD
b) chứng minh : NM = AC + DB
Cho tứ giác ABCD và một điểm M nằm trong tứ giác đó. Tìm vị trí của điểm M sao cho: MA + MB + MC + MD đạt giá trị nhỏ nhất.
Gọi I là giao điểm
Lấy điểm M bất kì trong tứ giác ABCD
Ta có: \(MA+MC\ge AC\)
\(MB+MD\ge BD\)
nên \(MA+MB+MC+MD\ge AC+BD\)( có giá trị không đổi )
Để MA + MB + MC + MD đạt giá trị nhỏ nhất thì:
\(MA+MB+MC+MD=AC+BD\Leftrightarrow"="MA+MC\ge AC\)\(\Rightarrow M\in AC\)
Tương tự xảy ra \("="\Leftrightarrow MB+MD\ge BD\Rightarrow M\in BD\)
Nên M trùng O
Vậy......................
ta có AM+MC> AC(bđt tam giác)
(dấu = xảy ra khi M thuộc AC) (1)
ta lại có BM+MD> BD (bđt tam giác)
(dấu = xảy ra khi M thuộc BD) (2)
lấy (1)+(2) suy ra: AM+MC+BM+MD> AC+BD
và đạt giá trị nhỏ nhất khi :AM+MC+BM+MD=AC+BD
vậy M nằm ở giao điểm AC và BD
Hoặc
MA+MB+MC+MD
(MA+MD)+(MB+MC)
(MA+MD) nhỏ nhất khi AMD trên đường thẳng
(MB+MC) nhỏ nhất khi BMC trên đường thẳng
\(\Rightarrow\) GTNN đạt được khi M là giao hai đường chéo AD và BC
Vậy..................................
*Đề toán hsg lớp 8
trong tứ giác ABCD, BC = 10√3 cm và CD = 20cm. Biết rằng Góc ADC = Góc ABC = 90 độ và góc BCD = 5 x Góc DAB. Nếu diện tích tứ giác ABCD là m√3 cm2 , thì giá trị của m bằng bao nhiêu ????
cho tứ giác ABCD. Xác định vị trí của điểm M nằm trong tứ giác ABCD sao cho tổng MA +MB + MC + MD đạt giá trị nhỏ nhất
cho tứ giác ABCD, M là một điểm nằm trong tứ giác đó. XÁc định vị trí của M để MA+MB+MC+MD nhỏ nhất
cho tứ giác ABCD và một điểm M nằm trg tứ giác đó :v . tìm vị trí của M sao cho MA+MB+MC+MD đạt giác trị nhỏ nhất
giúp mình bài này nha mn :(
mình cám ơn nhìu ạ
Ta có: \(MA+MC\ge AC\)
Dấu " = " xảy ra khi M thuộc AC
Ta có: \(MB+MD\ge BD\)
Dấu " = " xảy ra khi M thuộc BC
=> \(MA+MC+MB+MD\ge AC+BD\)
Dấu " = " xảy ra khi M là giao điểm của AC, BD
Vậy khi M là giao điểm của AC và BD thì MA+MB+MC+MD nhỏ nhất
1.Cho tứ giác ABCD. Chứng minh rằng \(\frac{1}{2}\)p< AC + BD< p ( với p là chu vi cùa tứ giác ABCD)
2.Cho tứ giác ABCD, M là một điểm nằm trong tứ giác đó. Xác định vị trí của M để MA+MB+MC+MD nhỏ nhất.
Cho tứ giác ABCD , M là 1 điểm nằm trong tứ giác đó . Xác định vị trí của M để tổng MA+MB+MC+MD đạt giá trị nhỏ nhất
Ta có : \(MA+MC\ge AC\)
Dấu " = " xảy ra khi M thuộc AC
Ta có :\(MB+MD\ge BD\)
\(\Rightarrow MA+MC+MB+MD\ge AC+BD\)
Dấu " = " xảy ra khi M là giao điểm của AC, BD
Vậy khi M là giao điểm của AC và BD thì MA+MB+MC+MD nhỏ nhất
Theo đề bài ta có :\(MA+MC\ge AC\)
Dấu " = " xảy ra khi và chỉ khi \(M\in AC\)
Theo đề bài có : \(MB+MD\ge BD\)
Dấu " =" xảy ra khi và chỉ khi \(M\in BD\)
\(\Rightarrow MA+MB+MC+MD\ge AC+BD\)
Vậy \(MA+MB+MC+MD\)nhỏ nhất sẽ bằng \(AC+BD\)
\(\Leftrightarrow\)M là giao điểm của 2 đường chéo AC và BD .
cho tứ giác ABCD. O là một điểm bất kỳ nằm trong tứ giác. Tìm vị trí của điểm O để OA+OB+OC+OD có giá trị nhỏ nhất
cho tứ giác ABCD. O là một điểm bất kỳ nằm trong tứ giác. Tìm vị trí của điểm O để OA+OB+OC+OD có giá trị lớn nhất