Cho tam giác đều ABC. M là một điểm nằm trong tam giác ABC.Từ M kẻ ME // AB; MD // AC; MF // BC. Chu vi tam giác EDF =MA+MB+MC.
Cho tam giác ABC đều và M nằm trong tam giác ABC.Từ M kẻ đường song song với BC;CA;AB cắt các cạnh AB;BC;CA lần lượt tại N;P;Q.Tìm vị trí điểm M để tam giác NPQ đều
Ta có: ^MPB = ^ACB = 600 => ^MPB = ^ABC hay ^MPB = ^NBP
Xét tứ giác BNMP có: MN // BP và ^MPB=^NBP => Tứ giác BNMP là hình thang cân
=> NP = BM. Tương tự: 2 tứ giác AQMN & CPMQ là htc => NQ=AM; PQ=CM
Ta thấy: \(\Delta\)NPQ là tam giác đều <=> NP=NQ=PQ <=> BM=AM=CM
<=> Điểm M cách đều 3 đỉnh A;B;C của \(\Delta\)ABC <=> M là tâm của tam giác đều ABC
Vậy khi M là tâm của \(\Delta\)ABC thì \(\Delta\)NPQ đều.
Cho tam giác ABC đều. Từ điểm M nằm trong tam giác, kẻ ME,MF,MK vuông góc với 3 cạnh lần lượt là AB,BC,CA. CMR MF +ME + MK =AH ( AH là đường cao )
Cho tam giác ABC đều M bất kì trong tam giác ABC.Từ M kẻ các đường vuông góc đến các cạnh AB,BC,AC lần lượt cắt các cạnh đấy tại N,P,Q a C m MN MP MQ không đổi khi m thay đổib 3 cạnh MN ,MP,MQ là 3 cạnh của tam giác
Cho tam giác nhọn ABC.Từ một điểm M nằm trong tam giác, vẽ MD,ME,MF lần lượt vuông góc với BC,AC,AB.
CMR: max{MA,MB,MC} ... 2min{MD,ME,MF}
( trong đó: max{MA,MB,MC} là độ dài cạnh lớn nhất trong ba cạnh MA,MB,MC.
Cho tam giác ABC đều, M là điểm nằm trong tam giác. Từ M kẻ các đường thẳng song song với BC, CA, AB cắt AB, BC, CA lần lượt tại N,P,Q. Xác định vị trí của M để tam giác NPQ đều
Cho tam giác ABC có trực tâm H. M là điểm nằm trong tam giác sao cho ∠ABM = ∠ACM. Kẻ ME ⊥ AC, MF ⊥ AB. Gọi K là trực tâm tam giác AEF. Chứng minh rằng K, M, H thẳng hàng.
Cho tam giác đều ABC, một điểm M thuộc miền trong tam giác. kẻ MD vuông góc với AB, ME vuông góc với BC, MF vuông góc với AC. CM MD+ME+MF không phụ thuộc vào điểm M.
Cho tam ABC đều và điểm M nằm trong tam giác. Từ M kẻ các đường thẳng song song với BC,CA,AB cắt AB,BC,CA lần lượt tại N,P,Q. Xác định vị trí điểm M để NPQ là tam giác đều
Cho tam ABC đều và điểm M nằm trong tam giác. Từ M kẻ các đường thẳng song song với BC,CA,AB cắt AB,BC,CA lần lượt tại N,P,Q. Xác định vị trí điểm M để NPQ là tam giác đều
làm tương tự
3. Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Cmr
CH/CB=CK/CD
Tam giác CHK đồng dạng tam giác BCA
AB.AH + AD.AK= AC x AC
bài làm
a)
Ta có: HBCˆ=KDCˆ(=180o−ABCˆ)HBC^=KDC^(=180o−ABC^)
=>ΔHBC∼ΔKDC(g.g)=>ΔHBC∼ΔKDC(g.g)
b)
Ta có:
BC⊥CK(BC//AD;AD⊥CK)BC⊥CK(BC//AD;AD⊥CK)
=>HCKˆ=90o+BCHˆ=>HCK^=90o+BCH^
Mà ABCˆ=90o+BCHˆABC^=90o+BCH^
=>HCKˆ=ABCˆ=>HCK^=ABC^
Mà CHCK=BCCD=BCAB(ΔHBC∼ΔKDC)CHCK=BCCD=BCAB(ΔHBC∼ΔKDC)
=>ΔABC∼ΔKCH(c.g.c)=>ΔABC∼ΔKCH(c.g.c)
c)
Kẻ BE⊥AC(E∈AC);DF⊥AC(F∈AC)BE⊥AC(E∈AC);DF⊥AC(F∈AC)
=>ΔABE∼ΔACH(g.g)=>ΔABE∼ΔACH(g.g)
=>AEAH=ABAC=>AEAH=ABAC
<=>AE.AC=AB.AH<=>AE.AC=AB.AH
T/tự, ta có: AF.AC=AD.AK(ΔADF∼ΔACK)AF.AC=AD.AK(ΔADF∼ΔACK)
Mà: AF=CE(ΔADF=ΔCBE(ch−gn))AF=CE(ΔADF=ΔCBE(ch−gn))
=>AB.AH+AD.AK=AE.AC+AF.AC=(AE+AF).AC=(AE+CE).AC=AC.AC=>AB.AH+AD.AK=AE.AC+AF.AC=(AE+AF).AC=(AE+CE).AC=AC.AC