cho tam giác ABC cân tại A có AB=AC=5cm , BC = 6cm . phân giác góc B cắt Ac tại M . phân gicas góc C cắt AB tại N .
a) AM = ? ; MC = ?
b) MN = ?
c) Tính tỉ số diện tích của các tam giác AMN và tam giác ABC.
d) Tính diện tích tam giác BMN
Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 6cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N : a) Chứng minh MN // BC b) Tính độ dài AM ? MC ? MN ? c) Tính SAMN ?
cho tam giác ABC cân tại A có AB=AC=5cm, BC=6cm. phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N có MN song song BC: Tính AM và MN
giúp đỡ với các bạn
cho tam giác abc cân tại a có ab = ac = 5cm , bc = 6cm . Phân giác của góc b cắt ac tại m , phân giác của góc c cắt ab tại n
a ) cm : mn // bc
b) am = ? , mc = ? , mn = ?
c) tính diện tích tam giác amn
a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)
cho tam giác abc cân tại a có ab = ac = 5cm , bc = 6cm . Phân giác của góc b cắt ac tại m , phân giác của góc c cắt ab tại n
a ) cm : mn // bc
b) am = ? , mc = ? , mn = ?
c) tính diện tích tam giác amn
Tam giác cân ABC cân tại A có AB=AC=5cm,BC=6cm,phân giác của góc B cắt AC tại M,tia phân giác của góc C cắt AB tại N.
Tính AM,CM,MN
Tính tỉ số diện tích của tam giác AMN và ABC
Cho ABC cân tại A có AB = AC = 5cm, BC = 6cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N . Cm MN//BC
Cho tam giác ABC cân tại A có AB=AC=5cm, BC=6cm. Tia phân giác B cắt AC tại M. Phân giác góc C cắt AB tại N
a) ANC đồng dạng tam giác AMB
a: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc NAC chung
=>ΔANC đồng dạng với ΔAMB
Cho tam giác ABC cân tại A có AB=AC=5cm, BC=6cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N:
1) CM MN song song BC
2) Tính độ dài AM, MN
3) Tính diện tích AMN
Cho △ABC cân tại A có AB=AC=5cm, BC=6cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N:
a) Chứng minh MN // BC b) Chứng minh △ANC ∼ △AMB
c) Tính độ dài AM, MN d) Tính SAMN
a: Xét ΔBAC có BM là phân giác
nen AM/MC=AB/BC=AC/BC
Xet ΔABC có CN là phân giác
nen AN/NB=AC/BC
=>AM/MC=AN/NB
=>MN//BC
b: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc A chung
=>ΔANC đồng dạng với ΔAMB
c: AM/AB=MC/BC
=>AM/5=MC/6=5/11
=>AM=25/11cm; MC=30/11cm
MN//BC
=>MN/BC=AM/AC
=>MN/6=25/11:5=5/11
=>MN=30/11cm
Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 6 cm Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N
a) C/m MN // BC
b) AM = ? , MC = ? , MN = ?
c) diện tích tam giác AMN = ?