Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Anh Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 11:34

a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)

\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)

CH=32(cm)

\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)

\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)

b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)

\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)

\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)

VƯƠNG TUẤN72
Xem chi tiết
N hsti hfs
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 23:21

Câu 15:

a: ĐKXĐ: x>=0; x<>1

Lan Hà
Xem chi tiết
Lan Hà
27 tháng 10 2020 lúc 21:37

ai giải giúp mk vs

đag cần gấp

Khách vãng lai đã xóa
Đặng Minh Quang
27 tháng 10 2020 lúc 22:09

a) Ta có: AB.cosB + cosC.AC=\(\frac{AB^2}{BC}+\frac{AC^2}{BC}\)=\(\frac{BC^2}{BC}\)=BC

b) CMR: tam giác ABC đồng dạng với tam giác AFE(g-g)

\(\Rightarrow\)\(\frac{AB}{AF}=\frac{BC}{EF}\)

\(\Rightarrow\)AB.EF=BC.AF

CMR: tam giác ABH đồng dạng với tam giác AHE (g-g)

\(\Rightarrow\)\(\frac{AB}{AH}=\frac{AH}{AE}\)

\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AH.AB}{AH^2}\)\(\Rightarrow\)\(\frac{AH}{AE}=\frac{EF.AB}{AH^2}\)

\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AF.BC}{AH^2}\)\(\Rightarrow\frac{AH^3}{BC}=AE.AF\)

Ta có:\(S_{AEHF}=AE.AF\)

\(\Rightarrow S_{AEHF}=\frac{AH^3}{BC}\)

Khách vãng lai đã xóa
Nguyễn Nguyễn
Xem chi tiết
Menna Brian
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 22:57

a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Ta có: \(AD\cdot AB=AE\cdot AC\)

nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

osaki yunno
Xem chi tiết
An Nhiên Lục
Xem chi tiết
hoàng nguyên linh
Xem chi tiết
Anime Tổng Hợp
19 tháng 2 2020 lúc 12:54

Đề sai à? Nếu đúng thì có phải là:

cho tam giác ABC cân tại A,hạ CM vuông góc với AB tại M, AH vuông góc BC tại H.Biết BH=2cm,AB=4cm

a)Tính AH

b)Tính chu vi tam giác ABC

c)Tính độ dài đường cao CM của tam giác ABC

d)Hạ MN vuông góc BC tại N.Tính MN

Khách vãng lai đã xóa
hoàng nguyên linh
24 tháng 2 2020 lúc 12:44

đề đúng đấy ạ và mình làm được rồi

Khách vãng lai đã xóa
Anime Tổng Hợp
24 tháng 2 2020 lúc 15:19

Nhưng nếu ghi hạ AM vuông góc BC tại H thì M nằm ở đâu?

Khách vãng lai đã xóa
Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)