Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng của A qua B; E là điểm thuộc tia đối của tia HA sao cho HE = 2HA. Khi đó DEC = ...Độ
Cho tam giác ABC vuông tại A ( AB<AC ) đường cao AH . Gọi K là trung điểm của BC , D là điểm đối xứng của A qua K . Tứ giác ABCD là hình gì . gọi M là điểm đối xứng của A qua H , chứng minh tứ giác BCDM là hình thang . Chúng minh tam giác KBM cân
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng của A qua B; E là điểm thuộc tia đối của tia HA sao cho HE = 2HA. Khi đó góc DEC=? độ
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Giải giúp với. Ngày mai phải thi rồi. Cảm ơn.
cho tam giác ABC vuông tại A, Ab = 8cm, AC= 16cm ,kẻ đường cao AH, gọi D là điểm đối xứng của B qua H, vẽ đường tròn đường kinh CD cắt AC tại E.
a, Cmr HI là tiếp tuyến
Cho tam giác ABC vuông tại A, có đường trung tuyến AM. Gọi D là trung điểm của AB, gọi E là điểm đối xứng của M qua D. a) Chứng minh tứ giác AEBM là hình thoi. b) Tam giác ABC có thêm điều kiện gì thì AEBM là hình vuông?
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AC, K đối xứng với H qua I
a, AHCK là hình gì? ( ko cần làm )
b, AKHB là hình gì? ( ko cần làm )
c, Gọi D là trung điểm của AH. CM B,K đối xứng nhau qua D(ko cần làm)
d, Tìm điều kiện của tam giác ABC để AHCK là hình vuông (ko cần làm)
e, Điểm P bất kì thuộc HC, M là trung điểm của IP hỏi khi P di động trên HC thì M di động trên đường nào?
Cho tam giác ABC vuông tại A, BC = 50cm, đường cao AH. Gọi D là điểm đối xứng H qua AB, E là điểm đối xứng H qua AC. Tìm điều kiện của tam giác ABC để diện tích tứ giác BDEC lớn nhất.
Cho △ABC vuông tại a (AB<AC) có đường cao AH (H ϵ BC).Kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E.
a)Chứng minh:tứ giác ADHE là hình chữ nhật
b)Gọi F là điểm đối xứng của H qua D .Chứng minh tứ giác AEDF là hình bình hành.
c)Gọi K là giao điểm của FA và HE.Chứng minh tứ giác ADEK là hình bình hành từ đó suy ra E là trung điểm HK.
d)Đường thẳng qua H và song song với DE cắt AC tại M.Chứng minh tứ giác AHMK là hình thoi
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>HD//AE và HD=AE
Ta có: HD//AE
D\(\in\)HF
Do đó: DF//AE
Ta có; HD=AE
HD=DF
Do đó: AE=DF
Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
c: Ta có: AEDF là hình bình hành
=>AF//DE
mà A\(\in\)KF
nên KA//ED
Ta có: EH//AD
E\(\in\)KH
Do đó: KE//AD
Xét tứ giác ADEK có
AD//EK
AK//DE
Do đó: ADEK là hình bình hành
=>AK=DE
mà DE=AF(AEDF là hình bình hành)
nên AF=AK
mà K,A,F thẳng hàng
nên A là trung điểm của KF
d: Xét tứ giác DHME có
DH//ME
DE//MH
Do đó: DHME là hình bình hành
=>DH=EM
mà DH=EA
nên EM=EA
=>E là trung điểm của AM
Xét tứ giác AHMK có
E là trung điểm chung của AM và HK
=>AHMK là hình bình hành
Hình bình hành AHMK có AM\(\perp\)HK
nên AHMK là hình thoi