So sánh A và B biết :
A =\(\frac{9}{a^{2015}}+\frac{7}{a^{2014}}\) ; B =\(\frac{8}{a^{2014}}+\frac{8}{a^{2015}}\)
So sánh A và B biết: A= \(\frac{9^{2014}+1}{9^{2015}+1}\); B= \(\frac{9^{2015}+1}{9^{2016}+1}\)
\(9A=\frac{9\left(9^{2014}+1\right)}{9^{2015+1}}=\frac{9^{2015}+9}{9^{2015}+1}=\frac{9^{2015}+1+8}{9^{2015}+1}=1+\frac{8}{9^{2015}+1}\)
\(9B=\frac{9\left(9^{2015}+1\right)}{9^{2016+1}}=\frac{9^{2016}+9}{9^{2016}+1}=\frac{9^{2016}+1+8}{9^{2016}+1}=1+\frac{8}{9^{2016}+1}\)
Ta thấy \(9^{2016}+1>9^{2015}+1\Rightarrow\frac{8}{9^{2016}+1}<\frac{8}{9^{2015}+1}\)
suy ra 9A >9B
Vậy A > B
nghĩ đi nhé , giải ra thì k còn thú vị nữa , ^_^ còn k thì 15 ' sau pm mình giải cho
Nghĩ nhé , nếu k nghĩ ra 15' sau pm mình giải cho ^_^
a) So sánh \(\frac{2013}{2015}\) và \(\frac{2014}{2016}\)
b) So sánh \(\frac{2013+2014}{2014+2015}\) và \(\frac{2013}{2014}+\frac{2014}{2015}\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........
SO SÁNH \(A=\frac{7^{2013}+1}{7^{2014}+1}\)VÀ \(B=\frac{7^{2014}+1}{7^{2015}+1}\)
\(\frac{A}{B}=\frac{7^{2013}+1}{7^{2014}+1}.\frac{7^{2015}+1}{7^{2014}+1}=\frac{7^{4028}+7^{2013}+7^{2015}+1}{7^{4028}+2.7^{2014}+1}=\)
\(=\frac{7^{4028}+7^{2013}\left(1+7^2\right)+1}{7^{4028}+2.7.7^{2013}+1}=\frac{7^{4028}+50.7^{2013}+1}{7^{4028}+14.7^{2013}+1}>1\)
\(\Rightarrow A>B\)
A/B sao lại nhân v bn
A/B thành A nhân với nghịch đảo của B mà
So sánh : \(A=\frac{2015^{2016}+1}{2015^{2015}+1}\) và \(B=\frac{2014^{2015}+1}{2014^{2014}+1}\)
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
\(A=\frac{2014^{2015}+2}{2014^{2016}+9}\) \(B=\frac{2014^{2016}+2}{2014^{2017}+9}\)
SO SÁNH A VÀ B
\(A=\frac{2014^{2015}+2}{2014^{2016}+9}\)
\(2014A=\frac{2014\left(2014^{2015}+2\right)}{2014^{2016}+9}=\frac{2014^{2016}+4028}{2014^{2016}+9}=\frac{\left(2014^{2016}+9\right)+4019}{2014^{2016}+9}=\frac{2014^{2016}+9}{2014^{2016}+9}+\frac{4019}{2014^{2016}+9}=1+\frac{4019}{2014^{2016}+9}\)
\(B=\frac{2014^{2016}+2}{2014^{2017}+9}\)
\(2014B=\frac{2014\left(2014^{2016}+2\right)}{2014^{2017}+9}=\frac{2014^{2017}+4028}{2014^{2017}+9}=\frac{2014^{2017}+9+4019}{2014^{2017}+9}=\frac{2014^{2017}+9}{2014^{2017}+9}+\frac{4019}{2014^{2017}+9}=1+\frac{4019}{2014^{2017}+9}\)
Ta thấy:
\(2014^{2016}+9< 2014^{2017}+9\)
\(\Rightarrow\frac{4019}{2014^{2016}+9}>\frac{4019}{2014^{2017}+9}\)
\(\Rightarrow1+\frac{4019}{2014^{2016}+9}>1+\frac{4019}{2014^{2017}+9}\)
\(\Rightarrow A>B\)
Vậy ....
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)
so sánh A và B biết
A=\(\frac{2014+2015}{2014x2015}\) B=\(\frac{2015+2016}{2015x2016}\)
minh khong biet dau vi no kho qua nhung cau van cu k nhe da so minh khong biet
Cho A : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
B :\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
So sánh A và B