Cho các đa thức : A(x) = 5x - 2x4 + x3 - 5 + x2 ; B(x) = -x4 + 4x2 - 3x3 + 7 - 6x ; C(x) = x + x3 - 2 . Chứng tỏ rằng x = 1 là nghiệm của A(x) và C(x) nhưng không phải là nghiệm của đa thức B(x) .
Cho các đa thức: P(x)= x3-2x4 +x2-5+5x; Q(x) = -4x+4x2-3x3-6x+7; R(x) =x2+x4+2 a) Sắp xếp các đa thức trên theo luỹ thừa giảm biến. b) Tính P(x)+Q(x). c) P(x)+Q(x) -R(x). d) CMR: R(x) không có nghiệm
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Cho các đa thức :
A(x) = 5x - 2x4 + x3 -5 + x2; B(x) = - x4 + 4x2 - 3x3 + 7 - 6x ; C(x) = x + x3 -2
a)Tính A(x) + B(x) ; A(x) - B(x) ; B(x) – C(x); C(x) – A(x)
A(x)+B(x)=-2x^4+x^3+x^2+5x-5-x^4-3x^3+4x^2-6x+7
=-3x^4+4x^3+5x^2-x+2
A(x)-B(x)=-2x^4+x^3+x^2+5x-5+x^4+3x^3-4x^2+6x-7
=-x^4+4x^3-3x^2+11x-2
B(x)-C(x)
=-x^4-3x^3+4x^2-6x+7-x^3-x+2
=-x^4-4x^3+4x^2-7x+9
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
: Cho các đa thức :
A(x) = 5x - 2x4 + x3 -5 + x2
B(x) = - x4 + 4x2 - 3x3 + 7 - 6x
C(x) = x + x3 -2
a)Tính A(x) + B(x) ; A(x) - B(x) + C(x) ; B(x) – C(x) – A(x); C(x) – A(x) – B(x)
c)Chứng tỏ rằng x = 1 là nghiệm của A(x) và C(x) nhưng không phải là nghiệm của đa thức B(x).
Cho các đa thức:
P(x) = 2x4 – x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = –2x4 + x2 + 5
Tính P(x) + Q(x) + H(x) và P(x) – Q(x) – H(x).
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
P(x) = 2x4– 2x3 – x +1
Q(x) = – x3 + 5x2+ 4x
H(x) = –2x4 + x2+ 5
Đặt và thực hiện các phép tính ta có:
Vậy: P(x) + Q(x) + H(x) = -3x3+ 6x2 + 3x + 6.
P(x) - Q(x) - H(x) = 4x4 - x3 - 6x2 – 5x – 4.
Cho các đa thức:
P(x) = 2x4 – x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = –2x4 + x2 + 5
Tính P(x) + Q(x) + H(x) và P(x) – Q(x) – H(x).
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
P(x) = 2x4– 2x3 – x +1
Q(x) = – x3 + 5x2+ 4x
H(x) = –2x4 + x2+ 5
Đặt và thực hiện các phép tính ta có:
Vậy: P(x) + Q(x) + H(x) = -3x3+ 6x2 + 3x + 6.
P(x) - Q(x) - H(x) = 4x4 - x3 - 6x2 – 5x – 4.