Tìm x, y, z:
2x=3y; 5y=7z và 3x-7y+5z=(-30).
Giúp mị zới mọi ngừi đề cương a>~< Mơn ạ~
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm x y z bt: ( giải chi tiết giúp mk nhé)
2x=3y=10z-2x-3y và x-y+z = -15
2x = 3y=10z -2x và x-y+z = -33
Tìm x,y,z biết : 2x=3y=10z - 2x - 3y và x+y=z - 32
tìm x y z biết 2x=3y=10z-2x-3y và x+y=z-32
2x=3y=10z-2x-3y hay 4x+3y=2x+6y=10z
hay \(\frac{4x+3y}{10}=\frac{2x+6y}{10}=z\)(1
Ta có : x+y=z-32 thay (1) ta có
\(\hept{\begin{cases}6x+7y=-320\\8x+4y=-320\end{cases}\Leftrightarrow\hept{\begin{cases}x=-30\\y=-20\end{cases}\Rightarrow}z=-18}\)
tìm x,y,z biết 2x-3y=2x+3y,3y-2z=3y+2z và x-2y+z=3
Tìm x, y, z biết (2x-3y)^2018+(3y-4z)^2020+|2x+3y-z-63|=0
Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)
Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)
nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)
Vậy \(x=18;y=12;z=9\).
$Toru$
Tìm x,y,z biết
2x=3y=10z-2x-3y và x-y+z=-15
Tìm x, y, z biết
a) 2x=3y-2x và x+y= 12
b) 7x-2y=5x-3y và 2x=3y=20
c) 2x=3y=4z-2y và x+y+z=35
d)3x=4y-2x=7z-4y và x+y-2z=10
Tìm x, y , z biết :
1) x-1 / 2 = y-2 / 3 = z-3 / 4 và x - 2y + 3z = 14
2) 2x = 3y = 10z - 2x - 3y và x - y + z = -15
3) 2x = 3y = 10z - 2x và x - y + z = -33
2x=3y=10z-2x-3y và x-y+z=-15
2x=3y=10z-2x và x-y + z =-33
Tìm x , y , z
Giải chi tiết giúp mk nhé vì mk hk rất kém