Lập phương trình mặt phẳng (α) qua hai điểm A(1; 0; 1), B(5; 2; 3) và vuông góc với mặt phẳng ( β) : 2x – y + z – 7 = 0
Lập phương trình mặt phẳng ( α ) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng ( β ): x + 2y – z = 0 .
Mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng ( β ): x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên ( α ) là AB → = (2; 2; 1) và n β → = (1; 2; −1).
Suy ra ( α ) có vecto pháp tuyến là: n α → = (−4; 3; 2)
Vậy phương trình của ( α ) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0
Lập phương trình của mặt phẳng ( α ) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:
( β ): 3x – 2y + 2z + 7 = 0
( γ ): 5x – 4y + 3z + 1 = 0
Mặt phẳng ( α ) vuông góc với hai mặt phẳng ( β ) và ( γ ), do đó hai vecto có giá song song hoặc nằm trên ( α ) là: n β → = (3; −2; 2) và n γ → = (5; −4; 3).
Suy ra n α → = n β → ∧ n γ → = (2; 1; −2)
Mặt khác ( α )( α ) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là n α → . Vậy phương trình của ( α ) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Chọn A.
Mặt phẳng (α) vuông góc với 2 mặt phẳng (P) và (Q) nên có một VTPT là
Phương trình mặt phẳng (α) là:
1(x - 2) + 2(y + 1) + 1.(z - 5) = 0 hay x + 2y + z – 5 = 0
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm M' là ảnh của M(4; 2; 1) qua phép đối xứng qua mặt phẳng (α).
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1 ; 0 ; 1 ; B 2 ; 1 ; 2 và mặt phẳng P : x + 2 y + 3 z + 3 = 0 . Phương trình mặt phẳng α đi qua hai điểm A, B và vuông góc với mặt phẳng (P) là:
A. x + 2y - z + 6 = 0
B. x + 2y - 3z + 6 = 0
C. x - 2y + z - 2 = 0
D. x + 2y - 3z + 6 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;1), B(2;1;2) và mặt phẳng (P):x+2y+3z+3=0. Phương trình mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng là:
A. x + 2y -z +6 =0
B.x + 2y -3z +6 =0
C. x -2y + z-2 =0
D. x + 2y -3z +6 =0
Viết phương trình mặt phẳng ( α ) trong các trường hợp sau: ( α ) đi qua điểm A(1; 0; 0) và song song với giá của hai vecto u → = (0; 1; 1), v → = (−1; 0; 2)
Hai vecto có giá song song với mặt phẳng ( α ) là: u → = (0; 1; 1) và v → = (−1; 0; 2).
Suy ra ( α ) có vecto pháp tuyến là n → = u → ∧ v → = (2; −1; 1)
Mặt phẳng ( α ) đi qua điểm A(1; 0; 0) và nhận n → = (2; −1; 1) là vecto pháp tuyến. Vậy phương trình của (α) là: 2(x – 1) – y + z = 0 hay 2x – y + z – 2 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;-1), B(0;4;0) và mặt phẳng (P) có phương trình 2x-y-2z+1=0. Gọi (Q) là mặt phẳng đi qua hai điểm A, B và tạo với mặt phẳng (P) góc nhỏ nhất bằng α . Tính cos α .
A. cos α = 1 9
B. cos α = 2 9
C. cos α = 1 6
D. cos α = 3 3
Cho điểm M 3 ; - 1 ; - 2 và mặt phẳng α : 3 x - y + z + 4 = 0 . Phương trình nào sau đây là phương trình mặt phẳng đi qua M và song song với (α)?
A. 3x-y+2z-6=0
B. 3x-y+2z+6=0
C. 3x+y-2z-14=0
D. 3x-y-2z+6=0