Cho hình thang cân ABCD có đáy nhỏ A B = 1 ; đáy lớn C D = 3 , cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng
A. 4 3 π
B. 5 3 π
C. 2 3 π
D. 7 3 π
cho ht cân ABCD có đáy nhỏ Ab=cạnh bên BC đường chéo ac vuông góc với cạnh bên ad.
a, tính các góc của hình thang cân
b,CMR trong hình thang ABCD đáy lớn gấp dôi đáy nhỏ
Trong không gian với hệ tọa độ Oxyz, cho hình thang cân ABCD có AB là đáy lớn, CD là đáy nhỏ và A ( 3;-1;-2 ); B ( 1;5;1 ); C ( 2;3;3 ). Tìm tọa độ điểm D của hình thang cân.
A. D ( 4;3;0 )
B. D 164 49 ; 51 49 ; 48 49
C. D 1 2 ; 1 3 ; 1 4
D. D ( -4;3;0 )
Vì ABCD là hình thang cân nên AD = BC = 3.
Gọi ∆ là đường thẳng qua C và song song với AB.
Gọi (S) là mặt cầu tâm A bán kính R = 3. Điểm D cần tìm là giao điểm của ∆ và (S).
Đường thẳng ∆ có vectơ chỉ phương A B → - 2 ; 6 ; 3 nên có phương trình:
x = 2 - 2 t y = 3 + 6 t z = 3 + 3 t
Phương trình mặt cầu
S : x - 3 2 + y + 1 2 + z + 2 2 = 9 .
Tọa độ điểm D là nghiệm của phương trình
- 2 t - 1 2 + 6 t + 4 2 + 3 t + 5 2 = 9 ⇔ 49 t 2 + 82 t + 33 = 0 ⇔ t = - 1 t = - 33 49 .
Đáp án B
Cho hình thang cân ABCD, đáy lớn CD, đáy nhỏ AB. CMR: có 1 đường tròn đi qua 4 đỉnh A,B,C,D
AB // CD (gt) nên \(\widehat{A}+\widehat{D}=180^0\)
Mà \(\widehat{A}=\widehat{B}\Rightarrow\widehat{B}+\widehat{D}=180^0\)
Do đó: ABCD là tứ giác nội tiếp nên có 1 đường tròn đi qua cả 4 đỉnh A,B,C,D
1) Cho hình thang cân ABCD (AB // CD). a) Chứng minh:. b) Gọi E là giao điểm của AC và BD. Chứng minh: . 2) Cho hình thang cân ABCD có đáy nhỏ CD = a , . Đường chéo AC vuông góc với cạnh bên BC. a) Tính các góc của hình thang. b) Chứng minh AC là phân giác của góc . c) Tính diện tích của hình thang.
Cho hình thang cân ABCD có đáy nhỏ AB= 2 cạnh bên và đáy nhỏ AB= một nửa đáy lớn
a) tính các góc của hình thang
b) tính chu vi của hình thang cân biết đường cao của hình thang là \(4\sqrt{3}\)
Cho hình thang cân ABCD, đáy nhỏ CD= 4cm, góc A+ góc B= 1/2 góc C+ góc D. Chu vi của hình thang cân đó là?
Cho hình thang cân ABCD, đáy lớn CD, đáy nhỏ AB. CMR: có 1 đường tròn đi qua 4 đỉnh A,B,C,D
Cho hình thang cân ABCD (AB//CD) đáy nhỏ AB = BC và đường chéo AC vuông góc với AD
a) Tính số đo các góc của hình thang cân
b) Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ
Bài 1: Cho hình thang cân ABCD . Đáy nhỏ AB bằng canh bên BC . Đường chéo AC vuông góc với canh bên AD.
a) Tính các góc của hình thang cân.
b) Chứng minh rằng đáy lớn gấp đôi đáy nhỏ.
i don't now
mong thông cảm !
...........................
1, Cho hình thang cân ABCD có đáy nhỏ AB, đường cao AH=2cm. Biết HC=3,5cm và HD=1,5cm. Tính chu vi của hình thang này 2, Cho hình thang cân ABCD có cạnh bên AD=5cm, các cạnh đáy AB=6cm và CD=14cm. Tính chiều cao của hình thang. XIN HÃY GIÚP MÌNH Ạ, xin cảm ơn 🌹❤️