Gọi S là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: y = x 3 - 3 x ; y = x . Tính S ?
A. S = 4
B. S = 8
C. S = 2 .
D. S = 0
Cho hàm số bậc ba y=f(x) có đồ thị (C) như hình vẽ. Biết đồ thị hàm số đã cho cắt trục Ox tại 3 điểm có hoành độ x 1 , x 2 , x 3 theo thứ tự lập thành cấp số cộng và x 3 - x 1 = 2 3 . Gọi diện tích hình phẳng giới hạn bởi (C) và trục Ox là S. Diện tích S 1 của hình phẳng giới hạn bởi các đường y = f x + 1 , y = - f x - 1 , x = x 1 và x = x 3 bằng
A. .
B. .
C. .
D. .
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x - 1 x + 1 và các trục tọa độ. Khi đó giá trị của S bằng
A. S = ln2 - 1 (đvdt)
B. S = 2ln2 - 1 (đvdt)
C. S = 2ln2 + 1 (đvdt)
D. S = ln2 + 1 (đvdt)
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = x 2 − 4 x + 3 P và các tiếp tuyến kẻ từ điểm A 3 2 ; − 3 đến đồ thị P . Giá trị của S bằng
A. 9 .
B. 9 8 .
C. 9 4 .
D. 9 2 .
Đáp án C
Phương trình tiếp tuyến có dạng y = y ' x 0 . x − x 0 + y 0
⇔ y = 2 x 0 − 4 . x − x 0 + x 0 2 − 4 x 0 + 3
Tiếp tuyến đi qua A 3 2 ; − 3 ⇒ thay A vào phương trình tiếp tuyến :
− 3 = 2 x 0 − 4 . 3 2 − x 0 + x 0 2 − 4 x 0 + 3
⇔ − 3 = 3 x 0 − 2 x 0 2 − 6 + 4 x 0 + x 0 2 − 4 x 0 + 3
x 0 2 − 3 x 0 = 0 ⇔ x 0 = 0 x 0 = 3
+) x 0 = 0 ⇒ tiếp tuyến d 1 : y = − 4 x − 0 + 3
y = − 4 x + 3
+) x 0 = 3 ⇒ tiếp tuyến d 2 : y = 2 x − 3 + 3
y = 2 x − 6
Vẽ đồ thị y = x 2 − 4 x + 3 và hai tiếp tuyến d 1 , d 2
Ta có: S = S 1 + S 2
= ∫ 0 3 2 x 2 − 4 x + 3 − − 4 x + 3 d x + ∫ 0 3 2 x 2 − 4 x + 3 − 2 x − 6 d x = 9 4
Gọi S là số đo diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số y = 2 x 2 + 3 x + 1 và y = x 2 − x − 2. Tính cos π S
A.0
B. − 2 2 .
C. 2 2 .
D. 3 2 .
Đáp án B
Xét phương trình
2 x 2 + 3 x + 1 = x 2 − x − 2 ⇔ x 2 + 4 x + 3 = 0 ⇔ x = − 1 x = − 3
Vậy diện tích hình phẳng cần tính là
S = ∫ − 3 − 1 x 2 + 4 x + 3 d x = ∫ − 3 − 1 x 2 + 4 x + 3 d x = 4 3
Vậy cos π S = − 2 2 .
Gọi S là số đo diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số y = 2 x 2 + 3 x + 1 và y = x 2 − x − 2. Tính cos π S
A. 0
B. − 2 2 .
C. 2 2 .
D. 3 2 .
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a; x = b Diện tích S của hình phẳng D được tính theo công thức
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [ a; b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a , x = b a < b . Diện tích S của hình phẳng D được tính theo công thức
A. S = ∫ a b f x − g x d x
B. S = ∫ a b g x − f x d x
C. S = ∫ a b f x − g x d x
D. S = ∫ a b f x − g x d x
Đáp án D
Phương pháp giải: Công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
Lời giải:
Diện tích S của hình phẳng D được tính theo công thức là S = ∫ a b f x − g x d x
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b] có đồ thị như hình bên và c ∈ a ; b . Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f ( x ) và các đường thẳng y = 0 , x = a , x = b . . Mệnh đề nào sau đây sai?
A. S = ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a c f x d x − ∫ c b f x d x
C. S = ∫ a b f x d x
D. S = ∫ a c f x d x + ∫ b c f x d x