tim x , y, z biet,\(\frac{z}{4}=\frac{y}{3};\frac{x}{2}=\frac{z}{5}\) va x+y+z=51
tim x,y,z biet \(\frac{3.X-5.Y}{2}=\frac{5.Y-3.Z}{3}=\frac{3.B}{4};X+Y+Z+17\)=17
Tim x , y , z biet:
\(\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{z}{x+y+3}=x+y+z\)
\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}vax+y+z=36\)
tim x, y ,z, biet
giup mk
mk tk
mk dg gap
\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36-12}{12}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x-5=6\\y-4=8\\z-3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=11\\y=12\\z=13\end{cases}}\)
Tim ba so x, y, z biet \(\frac{y+z+1}{x}=\frac{x+ z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
Suy ra
\(x+y+z=\frac{1}{2}\)(1)
\(y+z+1=2x\)(2)
\(x+z+2=2y\)(3)
\(x+y-3=2z\)(4)
(2)-(1) ta có
\(1-x=2x-\frac{1}{2}\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\Leftrightarrow y+z=\frac{1}{2}-\frac{1}{2}=0\)
\(y=-z\)
\(x+z+2=\frac{1}{2}+2-y==\frac{5}{2}-y\)
\(\frac{\frac{5}{2}-y}{y}=\frac{5}{2y}-1=2\Leftrightarrow\frac{5}{2y}=3\Leftrightarrow y=\frac{5}{6}\)
\(z=-\frac{5}{6}\)
tim x,y,z biet: \(\frac{x+z+2}{y}=\frac{y+z+1}{x}=x+y+3=\frac{1}{x+y+z}\)
Tim x,y,z biet rang: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
tim x,y,z biet
\(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6\) va 2x=3y=4z
Ta có :\(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6\)
\(\Leftrightarrow\frac{6}{2x}+\frac{12}{3y}+\frac{20}{4z}=6\)
\(\Leftrightarrow\frac{6}{2x}+\frac{12}{2x}+\frac{20}{2x}=6\)
\(\Leftrightarrow\frac{6+12+20}{2x}=6\)
\(\Leftrightarrow\frac{19}{x}=6\)
\(\Leftrightarrow x=\frac{19}{6}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{2}{3}.\frac{19}{6}=\frac{19}{9}=y\)
\(\Leftrightarrow\frac{3}{4}y=\frac{3}{4}.\frac{19}{9}=\frac{19}{12}=z\)
Vậy \(\hept{\begin{cases}x=\frac{19}{6}\\y=\frac{19}{9}\\z=\frac{19}{12}\end{cases}}\)
Tim x , y , z biet:
\(\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{z}{x+y-3}=x+y+z\)
Cach lam ho minh voi
tim x y z biet \(\frac{x-4}{2}\)=\(\frac{y-6}{3}\)=\(\frac{z-8}{4}\)va x+y+z=27
\(\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(\Rightarrow x=6,y=9,z=12\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)
Ta có:\(\frac{x-4}{2}=1\Rightarrow x=6\)
\(\frac{y-6}{3}=1\Rightarrow y=9\)
\(\frac{z-8}{4}=1\Rightarrow z=12\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{9}=\frac{27-18}{9}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x-4}{2}=1\Leftrightarrow x=6\\\frac{y-6}{3}=1\Leftrightarrow y=9\\\frac{z-8}{4}=1\Leftrightarrow z=12\end{cases}}\)