Cho hình thang ABCD có góc A = góc B, BC=AD. Chứng minh ABCD là hình thang cân
Cho tứ giác ABCD có góc A= góc B, AD=BC. Chứng minh tứ giác ABCD là hình thang cân
Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
Do đó: ΔADB=ΔBCA
Suy ra: DB=CA
Xét ΔACD và ΔBDC có
AC=BD
DC chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)
Xét tứ giác ABCD có
\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)
\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)
\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AC=BD
nên ABCD là hình thang cân
Tứ giác ABCD có góc A=góc B, BC=AD. Chứng minh ABCD là hình thang cân.
Cho tam giác ABCD có góc A = góc B và AD = BC. Chứng minh rằng tứ giác ABCD là hình thang cân.
Xét \(\Delta BAD\)và \(\Delta ABC\)có:
\(\widehat{A}=\widehat{B}\)
\(AD=BC\)
\(AB\)chung
\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(2 cạnh t.ư)
=>tứ giác ABCD là HTC
Cách 1 : Kẻ thêm đường phụ AC
Và đường phụ BD
Xét tam giác ADC và tam giác ABC ta có :
AC chung
AD = BC (gt)
^A = ^B (gt)
=> tam giác ADC = tam giác ABC
=> AB = DC ( 2 cạnh tương ứng bằng nhau )
hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang
Cách 2 : Ta có : AD = BC gt
=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :))
A) Tứ giác ABCD có AB = CD, AC = BD. Chứng minh ABCD là hình thang cân
B) Tứ giác ABCD có AD = AB = BC và góc A+góc C=180 độ. Chứng minh ABCD là hình thang cân
Mng vẽ hình ra nháp dùm mình nha xong rồi ib mail mình cho card 20k (nkhaduy@gmail.com)
Cho tứ giác ABCD có góc A=góc B, BC=AD. Chứng minh :
a) ΔACD=ΔBDC
b) ABCD là hình thang cân
a, Xét \(\Delta ADC\) và \(\Delta BCD\) có :
AD=BC ( gt)
AC=BD ( gt )
DC chung:
=> \(\Delta ADC\) = \(\Delta BCD\) ( đpcm)
b, Vì góc D = góc C nên ABCD là hình thang cân
Tk mk nha
cho tứ giác ABCD có: góc A = 110 độ, góc B = 70 độ. AB=BC=AD. chứng minh tứ giác ABCD là hình thang cân???
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
Cho hình thang cân ABCD có góc A = 60 độ (BC//AD). Đường chéo AC là phân giác của góc A và BC = 5cm
a) chứng minh tam giác ABC là tam giác cân
b) Chứng minh ACD là tam giác vuông
c) Tính chu vi hình thang ABCD
Cho hình thang cân ABCD(BC//AD)có góc BAD=60.Đường chéo AC là phân giác của góc BAD
a Chứng minh tam giác ABC cân
b Chứng minh AC vuông góc CD
c Gọi M là giao điểm cua AC và BD.Cm MA=MD
d Cho BC=5cm.Tính chu vi hình thang ABCD
bạn tự vẽ hình:
a)ta có:
BC//AD nên
góc BCA= góc CAD ( so le trong )
mà góc CAD= góc BAC ( AC là p/g của góc BAD)
=>góc BCA= góc BAC
=> tam giác ABC cân tại A
b)
tam giác ABC cân tại A => góc BAC= góc BCA =60o/2=30o
ta có: góc ABC+góc BCA + góc BAC=180o ( định lí tổng 3 góc của 1 tam giác )
=> góc ABC=180o-30o-30o
=120o
mà góc ABC=góc BCD = 120o (ABCD là hình thang cân )
=> góc ACD= góc BCD- góc BCA
=120o-30o
=90o
suy ra: AC vuông góc với CD
c) Xét tam giác ABC và tam giác DCB
BC : cạnh chung
góc ABC= góc BCD ( ABCD là hình thang cân )
AB=CD ( ABCD là hình thang cân )
suy ra tam giác ABC= tam giác DCB ( c-g-c)
=> góc BAC= góc CDB ( 2 góc tương ứng )
mà góc BAC+ góc CAD= góc BAD
góc CDB+ góc BDA = góc CDA
kết hợp với góc BAD=góc CDA (ABCD là hình thang cân )
=> góc CAD = góc BCA
=> tam giác AMD cân tại M
=>MA=MD
Giải giùm mk nhé :)
a) Tứ giác ABCD có AB= CD ;AC=BD. Chứng minh ABCD là hinhg thang cân
b) Tứ giác ABCD có AD=AB=BC và góc A+góc C = 180o. Chứng minh ABCD là hình thang cân