Cho a = 1+1/2+1/3+1/4+.....+1/(2100-1)
CMR P > 50
Cho A = 1/1.2 + 1/3.4 + 1/5.6 +...+ 1/49.50
B = 1/1 + 1/2 + 1/3 + 1/4 + ... + 1/49 + 1/50
C = 1/2 + 1/4 + 1/6 +...+1/48 + 1/50
CMR : A = B - 2C
A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
A = \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
A = \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
A = B - 2C ( ĐPCM )
Vậy A = B - 2C
Cho A = 1 + 1/2 = 1/3 + 1/4 + ... + 1/2^100 -1
CMR : a) A < 100
b) A > 50
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)
cho A = 1/3 mũ 2 + 1/4 mũ 2 + 1/5 mũ 2 + ...+ 1/50 mũ 2 CMR : A > 1/4
giúp mình nhé
tích mình đi
ai tích mình
mình ko tích lại đâu
thanks
cho A = 1/3 mũ 2 + 1/4 mũ 2 + 1/5 mũ 2 + ...+ 1/50 mũ 2 CMR : A1/4
tích mình với
ai tích mình
mình tích lại
thanks
cho A=1+1/2+1/3+1/4+....................+1/2^100-1 , cmr
a. A<100 , b.A>50
Cho A = 1 + \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2^{100}-1}\)
CMR: A > 50
Cho A= \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2^{100}-1}\). CMR 50<A<100
Cho:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2^{100}-1}\)
CMR: A>50
Tham khảo tại link sau : olm.vn/hoi-dap/question/687403.html
Cho P = 1+1/2+1/3+1/4+...+1/2^100-1.CMR P > 50
P=1+1/2+1/3+1/4+...+1/2^100-1
suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100
suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100
suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100
suy ra P>1+1/2.100-1/2^100
suy ra P>51-1/2^100>51-1
suy ra P>50(đpcm)
P=1+1/2+1/3+1/4+...+1/2^100-1
suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100
suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100
suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100
suy ra P>1+1/2.100-1/2^100
suy ra P>51-1/2^100>51-1
suy ra P>50(đpcm)