Cho a,b,c >0 thỏa mãn a+b+c = \(a^2+b^2+c^2\)= \(a^3+b^3+c^3\).Tính \(a^5+b^5+c^5\)
Cho a,b,c > 0 thỏa mãn a + b + c = a^2+b^2 +c^2 = a^3+b^3 +c^3 .Tính a^5+b^5 +c^5
Cho a,b,c > 0 thỏa mãn a + b + c = a^2+b^2 +c^2 = a^3+b^3 +c^3 .Tính a^5+b^5 +c^5
Cho các số thực a,b,c thỏa mãn a+b+c=0. \(CMR:\frac{a^5+b^5+c^5}{5}=\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}\)
Ta có \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-2ab-2bc-2ca\right)\)
Mà a+b+c=0 nên \(a^3+b^3+c^3=3abc\)
Ta có \(\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}=\frac{(a^2+b^2+c^2)3abc}{6}=\frac{(a^2+b^2+c^2)abc}{2}\)(1)
Ta có \(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=\left(a^2+b^2+c^2\right)3abc\)(2)
Bạn nhân vế trái của (2) ra rồi nhóm lại thì đc nhứ sau
\(=>2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)3abc\)
\(=>2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
\(=>\frac{a^5+b^5+c^5}{5}=\frac{abc(a^2+b^2+c^2)}{2}\)(3)
Từ (1)và (3)=> đpcm
Học tốt nha bạn !
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
1) Cho 2 số x, y thỏa mãn x-2y=5; x^2+4y^2=29 Tính giá trị của A=x^3-8y^3
2) Cho các số thực a, b, c thỏa mãn a+b+c=0 Chứng minh rằng a^4+b^4+c^4=1/2(a^2+b^2+c^2)^2
1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy) (vì x-2y=5 và x^2+4y^2=29) (1)
Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)
=> xy=1 (2)
Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155
Vậy gt của bt A là 155
2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab
=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)
=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)
=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)
Cho a,b,c là 3 số đôi 1 không đối nhau thỏa mãn ab+bc+ac=5. Tính P= (a+b)^2(b+c)^2(c+a)^2/(5+a^2)(5+b^2)(5+c^2)
1. Rút gọn: M = [(x^5)-(2x^4)+(2x^3)-(4x^2)+3x+6]/[(x^2)+2x-8]
2. Cho a, b, c thỏa mãn: (1/a)+(1/b)+(1/c)=1/(a+b+c)
Chứng minh rằng: M = [(a^19)+(b^19)].[(b^5)+(c^5)].[(c^2001)+(a^2001)]=0
3. Cho a, b, c, x, y, z thỏa mãn: a+b+c=1; (a^2)+(b^2)+(c^2)=1 và 1/a=1/b=1/c
Chứng minh rằng: xy+yz+xz=0
Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: (a5 + b5 + c5)/5 = (a2 + b2 + c2)/2 . (a3 + b3 + c3)/3
Cho 3 số a ; b ; c thỏa mãn ( a +2 )^2 + ( b - 3 )^4 + ( 5 - c )^6 = 0.
Khi đó tổng a + b + c=?