Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Hoàng Minh
Xem chi tiết
Mai Anh
Xem chi tiết
Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:28

Do p là số nguyên tố nên \(p-1\) là số chẵn , suy ra : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(=\left(\frac{1}{1}+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\left(\frac{1}{3}+\frac{1}{p-3}\right)+...+\left(\frac{1}{\frac{p-1}{2}}+\frac{1}{\frac{p+1}{2}}\right)\)

\(=\frac{p}{1.\left(p-1\right)}+\frac{p}{2.\left(p-2\right)}+\frac{p}{3.\left(p-3\right)}+...+\frac{p}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\)

\(=p\left[\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+\frac{1}{3.\left(p-3\right)}+...+\frac{1}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\right]\)

Ta có : \(1.\left(p-1\right).2.\left(p-2\right)...\frac{p-1}{2}.\frac{p+1}{2}=\left(p-1\right)!\)

Suy ra : \(\frac{m}{n}\) có dạng :

\(\frac{m}{n}=p\frac{q}{\left(p-1\right)!}\Rightarrow m\left(p-1\right)!=npq\Rightarrow m\left(p-1\right)!⋮p\)\(\left(p-1\right)!⋮̸p\) nên \(\Rightarrow m⋮p\).

Chúc bạn học tốt nha !!!

soyeon_Tiểubàng giải
1 tháng 1 2017 lúc 10:38

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(\frac{m}{n}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+...+\)\(\left(\frac{1}{\left(p-1\right):2}+\frac{1}{\left(p-1\right):2+1}\right)\)

\(\frac{m}{n}=p.\)(\(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+...+\)\(\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\))

MC: 1.2.3...(p-1)

Gọi các thừa số phụ lần lượt là: k1;k2;k3;...;kp-1

Khi đó, \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+...+k_{p-1},\right)}{1.2.3...\left(p-1\right)}\)

Do p nguyên tố > 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

=> m chia hết cho p (đpvm)

Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:18

Mình bận xem mấy cái dạng bài tập hóa . Bạn cần gấp không mình làm cho .hihi

Minh Triều
Xem chi tiết
Lê Đình Nam
26 tháng 1 2017 lúc 8:30

\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)

\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)

\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)

MC:1.2.3....(p-1)

Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)

Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)

Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

\(\Rightarrow\)m chia hết cho p (đpcm)

Nguyễn Phương Thảo
Xem chi tiết
ngonhuminh
8 tháng 1 2017 lúc 0:05

\(\frac{P}{m-1}=\frac{m+n}{p}\) dk tồn tại  \(VT>0\Rightarrow m>1\)

\(\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)(*)

VT là bp số nguyên tố VP xẩy ra các trường hợp

TH1: p=(m+n)=(m-1)=> n=-1 (loại n tự nhiên)

TH2:  Một trong hai số phải =1 có m>1=> m+n>1

=> m-1=1=> m=2

\(\Rightarrow P^2=\left(n+2\right)\left(2-1\right)=n+2\Rightarrow dpcm\)

nghiem thi van anh
15 tháng 1 2017 lúc 18:22

VT là bp số nguyên tố vp xẩy ra các trường hợp

TH1: p={m+n}={m-1}=>n-1{loai n tu nhien}

TH2:mot trong 2 so phai =1 co m>1=>m+n>=>m-1=1=>m2

chúc bạn làm tốt

lê dạ quỳnh
23 tháng 4 2017 lúc 20:10

cho em hỏi nhu tí : tại sao 1 trong 2 số phải = 1 vậy

Nguyễn Quang Thọ
Xem chi tiết
nene
5 tháng 9 2018 lúc 17:49

ta có \(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow P^2=\left(m-1\right)\left(m+n\right)\)

ta có \(Ư\left(P^2\right)\in\left\{1;p;p^2\right\}\)vì p là số nguyên tố

do \(m+n>m-1;m+n\ne m-1\Rightarrow m+n=p^2;m-1=1\)

\(\Rightarrow m=1+1=2\Rightarrow m+n=2+n=P^2\left(đpcm\right)\)

Nguyễn Hữu Tuấn Tú
Xem chi tiết
Thúy Ngân
17 tháng 8 2017 lúc 11:32

\(\frac{p}{m-1}=\frac{m+n}{p}\)

\(\Rightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Trường hợp 1:

\(\Rightarrow p=m-1=m+n\) \(\Rightarrow m-m=n+1\Rightarrow0=n+1\Rightarrow n=-1\)(loại vì n thuộc số tự nhiên) 

Trường hợp 2:

Vì p là số nguyên tố nên bình phương của p có 3 ước nguyên tố là 1;p ; p\(^2\)(1)

m - 1 < m+n (2)

Từ (1) và (2) \(\Rightarrow\) m-1 = 1 và m+n = p\(^2\)

\(\Rightarrow m=1+1=2\) . Thay m = 2 vào \(p^2=\left(m-1\right)\left(m+n\right)\) nên ta có:

\(p^2=\left(2-1\right).\left(2+n\right)=n+2\) (đpcm)

k mình vs nhớ kb với mik nha!

Phạm Trung Kiên
19 tháng 8 2017 lúc 16:05

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn

Hoàng Minh Hiếu
6 tháng 5 2021 lúc 20:41

hay đấy bn

Khách vãng lai đã xóa
Uyen Duong Chau
Xem chi tiết
Xuân Mai
Xem chi tiết
Xem chi tiết
IS
5 tháng 3 2020 lúc 21:30

điều kiên tồn tại vt >0=> m > 1

=> \(p^2=\left(m+n\right)\left(m-1\right)\left(1\right)\)

vt là bp số nguyên tố nên vp xảy ra các TH

TH1:\(p=\left(m+n\right)=\left(m-1\right)=>n=-1\)( loại n là số tự nhiên)

Th2: một trong 2 số phải bằng 1 có m>1 => m+n>1

=> m-1=1 => m=2

=>\(p^2=\left(n+2\right)\left(2-1\right)=n+2\left(dpcm\right)\)

Khách vãng lai đã xóa