Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ kiều linh
Xem chi tiết
tuythoi
11 tháng 3 2016 lúc 20:59

=935 nhe bé

Trần Trọng Nghĩa
Xem chi tiết
Akai Haruma
30 tháng 3 2023 lúc 18:52

Lời giải:

$\frac{a+n}{b+n}-\frac{a}{b}=\frac{b(a+n)-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}$

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}>0$

$\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}<0$

$\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}=0$

$\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

huy pham
Xem chi tiết
Hoàng Thanh Tùng
Xem chi tiết
Do Quang Huy
Xem chi tiết
Nguyễn Thị BÍch Hậu
17 tháng 6 2015 lúc 13:57

để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}

Lê Huyền Trang
10 tháng 9 2017 lúc 21:21

nếu a/b<1 => a/b< a+n/ b+n

nếu a/b>1=> a/b> a+n/ b+n

còn các câu áp dụng thì tự làm nhé

Nguyễn Ngọc Mai Chi
Xem chi tiết
buratino
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
nguyễn Thị phương vy
Xem chi tiết
HUỲNH HƯƠNG LƯU
21 tháng 6 2015 lúc 15:36

theo minh thi

neu a<b thi ta co a(b+n) va b(a+n)

       ab+an và ab + bn

vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n

neu a>b thi ta co a(b+n) va b(a+n)

      ab+an va ab+bn

vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n

neu a=b thi a(b+n) và b(a+n)

       ab+an và ab+ bn

vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n

Nguyen Thi Tuyet Ngan
19 tháng 6 2015 lúc 11:50

a bé hơn b

a+n<b+n
 

 

Tran Thi Thu Trang
Xem chi tiết
Trần Thị Loan
1 tháng 5 2015 lúc 19:33

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)}{b\left(b+n\right)}-\frac{a.\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{\left(b-a\right).n}{b\left(b+n\right)}=\frac{n}{b\left(b+n\right)}.\left(b-a\right)\)

Nếu a\(\le\) b => b - a \(\ge\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\ge0\Rightarrow\frac{a+n}{b+n}\ge\frac{a}{b}\)

Nếu a \(\ge\) b => b - a \(\le\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\le0\Rightarrow\frac{a+n}{b+n}\le\frac{a}{b}\)

Vậy.......

Kaitoru
1 tháng 5 2015 lúc 19:41

 

Admin kìa                                                                       

đỗ lê trung hiếu
8 tháng 3 2017 lúc 21:03

1-a+n\b+n=b+n=b-a\b+n

nếu a<b thì a\b là so sánh phần bù 

nếu a=b thì a\b=a+n\b+n