Tìm các số nguyên x,y sao cho (x-2)2x (y-3)=-4
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
a) \(\dfrac{2x}{-9}\) = 10 phần 91
b) -5 phần 2x = 20 phần 28\
c) 1 phần 3 = -3x phần 36
bài 2
a)Tìm các số nguyên x, y sao cho : -4 phần = x phần 22 = 40 phần
b)Tìm các số nguyên x, y, z thỏa mãn: -4 phần 8 = x phần -10 = -7 phần y = z phần -24
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
a) 2x−92x−9 = 10 phần 91
b) -5 phần 2x = 20 phần 28\
c) 1 phần 3 = -3x phần 36
bài 2
a)Tìm các số nguyên x, y sao cho : -4 phần = x phần 22 = 40 phần
b)Tìm các số nguyên x, y, z thỏa mãn: -4 phần 8 = x phần -10 = -7 phần y = z phần -24
Bài 1:
a: =>2x-9=10/91
=>2x=829/91
hay x=829/182
b: =>2x=-7
hay x=-7/2
c: =>-3x=-12
hay x=4
Cho x,y là số thực sao cho x+y,x^2+y^2,x^4+y^4 là các số nguyên. CMR 2x^2y^2 và x^3+y^3 là các số nguyên
THÁCH THỨC THIÊN TÀI TOÁN HỌC :) :))
TÌm các số nguyên x,y thỏa mãn : 2x^2+1/x^2 +y^2/4 =4 sao cho tích x,y đạt giá trị lớn nhất
\(\text{Ta có : }2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)=2-xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\text{ Lại có : }\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2\ge0\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
Mà xy có giá trị lớn nhất
\(\Rightarrow xy\in\left\{\left(1;2\right)\left(2;1\right)\left(-1;-2\right)\left(-2;-1\right)\right\}\)
Cho x, y là các số thực sao cho x + y, x2 + y2, x4 + y4 là các số nguyên. Chứng minh rằng : 2x2y2 và x3 + y3 là các số nguyên
Tìm các số nguyên x;y sao cho (2x+1)(2-y)=3
(2.x + 1 ) . ( 2 - y ) = 3
2 - y = 3 : ( 2.x + 1 )
2 - y = 3 : 2x + 3 : 1
2 - y = 3 : 2x + 3
2 - y - 3 = 3 : 2x
Vậy x = 1,5 và y = 2,5
Mình nghĩ thế
À lộn
x = 2,5 và y = 1,5
Hoặc x = y
x = y = 1
mình làm nhiều rồi hình như là bạn giải ko giống trường mình
1 ) Tìm số nguyên tố p , sao cho - + 2 và p + 4 cũng là các số nguyên tố ?
2 )Tổng của 2 số nguyên tố có thể bằng 2009 được không ? Tại sao ?
3 ) Tìm các số nguyên tố x và 7 , biết :
a ) ( 2x + 1 ) ( y + 3 ) = 10
b ) ( x + 1 ) ( 2y - 1 ) = 12
c ) x - 3 = y ( x + 2 )
d )( x + 6 ) =y ( x - 1 )
e ) ( 3x - 2 ) ( 2y - 3 ) = 1
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
3)
a) (2x + 1)(y + 3) = 10
=> 2x + 1 và y + 3 là các ước của 10
Ư(10) = {1; 2; 5; 10}
Lập bảng giá trị:
2x + 1 | 1 | 10 | 2 | 5 |
y + 3 | 10 | 1 | 5 | 2 |
x | 0 | 4,5 | 0,5 | 2 |
y | 7 | -2 | 2 | -1 |
Đối chiếu điều kiện x,y ∈ N
=> x = 0, y = 7
Vậy x = 0, y = 7
Cho x, y là các số thực sao cho x+y, x2+ y2, x4 + y4 là các số nguyên.
CMR: 2x2y2 và x3+y3 là các số nguyên