Phân tích đa thức thành nhân tử: \(x^4+64\)
phân tích đa thức đa thức thành nhân tử : X4 + 64
x4 + 64 = (x4 + 16x2 + 64) - 16x2 = (x2 + 8)2 - (4x)2 = (x2 - 4x + 8).(x2 + 4x + 8)
Ta có
x4 + 64
= (x4 + 16x2 + 64) - 16x2
= (x2 + 8)2 - (4x)2
= (x2 - 4x + 8).(x2 + 4x + 8)
hok tốt
phân tích đa thức x4+64 thành nhân tử
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
Phân tích đa thức thành nhân tử
x4+64
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
k nhoa
Ta có:
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8
= (x² + 8)² - (4x)²
= (x² - 4x + 8)(x² + 4x + 8)
k nhoa
\(x^4+64=\left(x^2\right)^2+8^2=\left(x^2+8\right)\left(x^2-8\right)\)
\(x^4+64\)Phân tích đa thức thành nhân tử
hdt thức nha bạn
~~~~~~~~~~~~~
^_^
\(x^4+64\)
\(=\left(x^2\right)^2+8^2+2x^2.8-2x^2.8\)
\(=\left(x^2+8\right)^2-\left(4x^2\right)\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
\(x^4+64\)
\(=\left(x^4+16x^2+64\right)-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
Phân tích đa thức thành nhân tử:
x^8+64
3x^4+192
câu hỏi hay......nhưng tui xin nhường cho các bn khác
Hãy tích đúng cho tui nha
THANKS
\(x^4\)+64
phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử
x^4 + 64
64a^4 + b^8
Phân tích đa thức thành nhân tử(Phương pháp thêm bớt hạng tử):
a)x^4+64
b)4x^4+1
c)64x^4+1
x4 + 64
= x4 + 16x2 + 64 - 16x2
= (x2 + 8)2 - (4x)2
= (x2 - 4x + 8)(x2 + 4x + 8)
4x4 + 1
= 4x4 + 4x2 + 1 - 4x2
= (2x2 + 1) - (2x)2
= (2x2 - 2x + 1)(2x2 + 2x + 1)
64x4 + 1
= 64x4 + 16x2 + 1 - 16x2
= (8x2 + 1)2 - (4x)2
= (8x2 - 4x + 1)(8x2 + 4x + 1)
phân tích đa thức thành nhân tử
x^64+x^32+1
phân tích đa thức thành nhân tử bằng phương pháp thêm- bớt hạng tử :
x^4 +4
A^4 + 64
x^5 + x + 1
x^5 + x - 1
x^4+4=x^4 + 4x^2 +4 - 4x^2=(x^2)^2+ 2.x^2.2+2^2 - (2x)^2 = (x^2+2)-(2x)^2 =(x^2+2-2x)(2^2+2-2x)
\(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)