Cho m,n là 2 số nguyên tố cùng nhau . Chứng minh m^2 + n^2 cũng là 2 số nguyên tố cùng nhau
Cho m,n là hai số nguyên tố cùng nhau .Chứng minh m^2+n^2 và m.n cũng là hai số nguyên tố cùng nhau .Nhanh lên nhé
cho m và n là 2 số nguyên tố cùng nhau. chứng minh m^2-n^2 và m.n là hai số nguyên tố cùng nhau
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
1.Cho A=2n-1; B=n(n-1) Chứng minh rằng A và B nguyên tố cùng nhau
2. Cho A và B là 2 số nguyên tố cùng nhau.
Chứng minh A=5a+3b và B=13a+8b là 2 số nguyên tố cùng nhau
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
3.
Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.
$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$
$\Rightarrow b\vdots d$
Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài)
Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Cho 2 số tự nhiên m và n . m là số lẻ. Chứng minh rằng m và m x n + 8 là 2 số nguyên tố cùng nhau.
Chứng minh nếu a và b là 2 số nguyên tố cùng nhau thì a và a + b cũng là 2 số nguyên tố cùng nhau
Gọi UCLN ( a, a + b ) = d ( d \(\in\)N* )
Ta có :
a \(⋮\)d
a + b \(⋮\)d
Từ đó ta có :
a + b - a \(⋮\)d
=> b\(⋮\)d
Mà a\(⋮\)d ; b\(⋮\)d => d \(\in\)ƯC ( a , b )
Mặt khác ƯCLN ( a , b ) = 1 nên 1 \(⋮\)d
Suy ra d \(\in\)Ư ( 1 ) = { 1 } hay d = 1
Vậy nếu a, b nguyên tố cùng nhau thì a và a + b nguyên tố cùng nhau .
Cho a và b là hai số nguyên tố cùng nhau . Chứng minh rằng a^2 và a+b cũng là hai số nguyên tố cùng nhau