tim ba so nguyen duong x,y,z,t sao cho xyzt=x+y+z+t
1. tim cac cap so nguyen duong (x, y) sao cho:
2 x3 + xy = 11
2. tim cac cap so nguyen duong (x, y, z)sao cho:
x + y + z = x*y*z
3. tim x thuoc z, biet;
|x| = -2003
|x| = |-2003|
minh dang can gap lam. chieu mai phai nop rui
tim nghiem nguyen cua cac phuong trinh:
xyz=4(x+y+z) (x+y+z)
5(x+y+z+t)+7=xyzt
nho giai cho minh nhe
trinh bay ra nhe
minh tink cho bn bn tink vho minh voi nhe
tim cac so nguyen duong x , y , z , t sao cho:
38(x.y.z.t+x.y+x.t+z.t+1)=49(y.z.t+y+t)
trinh bay cach lam cho minh voi nhe
Tim x,y,z nguyen duong t/man 1/x +1/y +1/z=2
Tim so nguyen x , y, z , t biet : 38 * ( x * y * z * t + x * y + x * t + z * t + 1 ) = 49 * ( y * z * t + y +t )
tim x,y,z nguyen duong sao cho
1+4.3^x+4.3^y=z^2
Tim cac so nguyen duong x;y;z thoa man x!+y!=10.z+9
Cho x,y,z la cac so nguyen duong thoa man 1/x + 1/y + 1/z = 2015.
Tim GTLN cua bieu thuc P=x+y/x^2+y^2 + y+z/y^2+z^2 + z+x/z^2+x^2
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
tim cac so nguyen nuyen duong x,y,z biet rang :
x^3-y^3 -z^3 =3xyz va x^2 =2(y+z)