Cho hình vuông ABCD, H là hình chiếu của A lên BD. M là trung điểm BC, N là trung điểm DH. CMR AN vuông góc MN
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N lần lượt là trung điểm AH và DH.
a) CM: MN//AD
b) Gọi I là trung điểm của BC. CMR: BMNI là hình bình hành
c)CMR: ΔANI vuông tại N
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là đường trung điểm của AH và DH. a, Chứng minh MN // AD b, gọi I là trung điểm của BC chứng minh góc BMNI là hình bình hành
a: Xét ΔAHD có
M là trung điểm của HA
N là trung điểm của HD
Do đó: MN là đường trung bình của ΔAHD
Suy ra: MN//AD
Cho hình thang vuông ABCD có: góc A =góc D = 90 ĐỘ và AD+BC=BC. Gọi I là trung điểm của AD. gọi H là hình chiếu vuông góc của I trên BC. Gọi K là giao điểm của DH và AB. cmr:
1) AB.DC=AD2/4
2) B là trung điểm của AK
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có hình chiếu vuông góc của A lên đường thẳng BD là H(-1/5;2/5), điểm M(0;-1) là trung điểm cạnh BC và điểm N(7/5;-4/5) là trung điểm của đoạn HD. Tìm tọa độ các đỉnh của hình chữ nhật ABCD.
Cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của A trên BD; I và J thứ tự là trung điểm của các đoạn thẳng DH và BC
Tính số đo của góc AIJ
Cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của A trên BD; I và J thứ tự là trung điểm của các đoạn thẳng DH và BC
Tính số đo của góc AIJ
Gọi R là trung điểm AI
Ta có:ID=IH;RA=RH nên IR là đường trung bình tam giác AIH => IR//AD => IR vuông góc với AB
=> R là trực tâm tam giác AIH => BR vuông góc với AI
Do IR là đường trung bình tam giác AIH nên IR//AD//BJ;IR=1/2AD=BJ => BRIJ là hình bình hành => BR//IJ
Mà BR vuông góc với AI nên IJ vuông góc với AI => ^AIJ=900
@Cool Kid : Hình như R là trung điểm của AH mới đúng ?!?!!
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.(Vẽ giúp hình với)
a/ Cminh MN //AD
b) gọi I là trung điểm của cạnh BC. Cminh tứ giác BMNI là hình bình hành.
c)Cminh tam giác AIN vuông tại N
Answer:
a. MN là đường trung bình của tam giác HAD
=> MN = \(\frac{1}{2}\)AD
=> MN // AD
b. MN // AD => MN // BI
\(MN=\frac{1}{2}AD=\frac{1}{2}BC=BI\)
=> BMNI là hình bình hành
c. AM vuông góc NB
Nm vuông góc AB
=> Bm vuông góc AN mà BM // NI
=> NN vuông góc NI
=> AIN vuông tại N
em có 4 bài sau ạ :)
Mai em đi học r ạ
1. Cho Tam giác ABC ; D,E lần lượt thuộc AB , AC sao cho BD=CE. M,N,I,K lần lượt là trung điểm BE,CD,DE, BC.
CMR : IK vuông góc MN
2. Cho Hình bình hành ABCD. Bên ngoài , vẽ hình vuông có cạnh AB,BC, CD và DA riêng biệt, Điểm trung tâm lần lượt là E,F,G, H riêng biệt. CMR EFGH là hình vuông
3. cho tứ giác ABCD , góc ADC + góc BCD = 90 độ , AD=BC
I,N,J,M là trung điểm của AB,AC,CD,BD riêng biệt. CMR INJM là hình vuông
4.Cho hình chữ nhật ABCD, BE vuông góc AC ( E thuộc AC) , I là trung điểm AE, M là trung điểm CD
a) Nếu H là trung điểm BE , chứng minh CH song song IM
b) Góc BIM =?
Em cám ơn ạ
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của AH và DH.
a, Chứng minh MN // AD
b, Gọi I là trung điểm của BC. Chứng minh tứ giác BMNI là hình bình hành
c, TÍnh Góc ANI
a) Xét tam giác AHD, có:
* M,N lần lượt là trung điểm của AH, DH (gt)
=> MN là đường trung bình của tam giác AHD
=> MN // AD (t/c) (đpcm)
b) Ta có: BC // AD (ABCD là hình chữ nhật)
=> MN // BI (I thuộc BC) (1)
Ta lại có: I là trung điểm BC (gt)
=> BI = AD : 2 (BC = AD)
Mà MN = AD :2 (MN là đường trung bình tam giác AHD)
=> BI = MN (2)
Từ (1), (2) => MBIN là hình bình hành (đpcm)
c) Xét tam giác AHN vuông tại N có:
* NM là trung tuyến (M là trung điểm AH)
=> NM = MA = MH (hệ quả)
=> tam giác AMN là tam giác cân tại M
Mà MB là đường nối từ đỉnh của tam giác cân AMN
=> MB là đường cao của tam giác AMN
=> góc AMB = 90 độ
=> AD vuông góc với MB
Mà MB // ID (MDIB là hình bình hành)
=> ID vuông góc với AD
=> góc ANI = 90 độ
P/S: Không chắc câu c) cho lắm.