Cho hệ phương trình \(\hept{\begin{cases}-2x+my=4\\mx-4,5y=6\end{cases}}\)
Tìm m để hệ phương trình vô nghiệm
Cho hệ phương trình: \(\hept{\begin{cases}mx+9y=3\\x+my=1\end{cases}}\)( với m là tham số)
Tìm giá trị của m để hệ phương trình đã cho có vô số nghiệm
\(HPT\Leftrightarrow\hept{\begin{cases}mx+9y=3\left(1\right)\\mx+m^2y=m\left(2\right)\end{cases}}\)
Lấy (2)-(1) => \(\left(m^2-9\right)y=m-3\) (3)
Để hpt vô số nghiệm <=> pt(3) có vô số nghiemj <=> \(\hept{\begin{cases}m^2-9=0\\m-3=0\end{cases}\Leftrightarrow m=3}\)
Vậy m=3
Cho hệ phương trình \(\hept{\begin{cases}\left(m-3\right)x+2y=3\\mx-y=7\end{cases}}\)
a) tìm m để hệ phương trình có nghiệm duy nhất
b) tìm m để hệ phương trình vô nghiệm
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
1.Cho hpt \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a) Với giá trị nào của n thì hệ phương trình có duy nhất nghiệm?
b) Với giá trị nào của n thì hệ phương trình vô nghiệm
Bài 3: Cho hệ phương trình \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a. Tìm m để hệ phương trình trên có nghiệm duy nhất, vô số nghiệm
b. Tìm m để hệ phương trình trên có nghiệm x<0, y>0
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
cho hệ phương trình : \(\hept{\begin{cases}x+y=3\\-mx-y=2m\end{cases}}\)
xác định m để hệ phương trình có 1 nghiệm? vô nghiệm? vô số nghiệm?
Cho hệ phương trình \(\hept{\begin{cases}2x-y=m\\x+2y=m-3\end{cases}}\)
Tìm m để hệ phương trình vô nghiệm
Cho hệ phương trình: \(\left(I\right)\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)
Tìm m nguyên để hệ phương trình có nghiệm duy nhất thỏa mãn x<0, y>0
cho hệ phương trình\(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
a) giải hệ phương trình khi m=2
b) tìm m để hệ phương trình có nghiệm duy nhất
giúp mình với mình cần nộp trong ngày 17/2/2020
\(a,\)Từ hệ PT trên \(< =>\hept{\begin{cases}2x-y=2\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}4x-2y=4\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}7x=9\\2x-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\\frac{18}{7}-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\y=\frac{4}{7}\end{cases}}\)
Vậy nghiệm của PT trên là ...
\(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)Cho hệ phương trình : 1 . Chứng minh rằng hệ phương trình luôn có nghiệm duy nhất khi m thay đổi
2 . Tìm giá trị nguyên lớn nhất của m để hệ có nghiệm ( x0;y0) thỏa mãn
giúp em với bài tập Tết ạ ! k làm cô giết em