cho: 2a+b+c+d/a = a+2b+c+d/b = a+b+2c+d/c = a+b+c+2d/d
tính: (a+b/c+d )+ (b+c/d+a) +( c+d/a+b) + (d+a/b+c)
cho: 2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d.Tính M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
Ta có\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Khi a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
Khi đó \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{a+d}{-\left(a+d\right)}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)= -4
Nếu a + b + d + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=1+1+1+1=4\)
Vậy khi a + b + c + d = 0 => M = -4
khi a + b + c + d \(\ne\)0 => M = 4
cho 2a+b+c+d / a = a+2b+c+d / b = a+b+2c+d = a+b+c+2d / d
tính M = a+b / c+d + b+c / d+a + c+d / a+b + d+a / b+c
Cho biểu thức sau:$\frac{2a+b+c+d}{a}$2 a + b + c + d a bam vao do nho bam lik e :\
Cho 2a + b + c + d/a = a + 2b + c + d/b = a + b+ 2c + d/c = a + b + c + 2d. Chứng minh rằng a = b = c
Theo bài ra ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại)
Nếu a + b + c + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
=> a = b = c = d (đpcm)
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
cho a/b=b/c=c/d=d/a va a+b+c khac 0.
Tinh M = 2a-b/c+d + 2b-c/a+d + 2c-d/a+b + 2d-a/b+c
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\left(\text{ vì a+b+c+d khác 0}\right)\)
\(\Rightarrow a=b=c=d\)
\(M=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2b-b}{b+b}+\frac{2c-c}{c+c}+\frac{2d-d}{d+d}=\frac{1}{2}.4=2\)
cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0 tính giá trị biểu thức M= 2a-b/c+d+ 2b-c/d+a + 2c-d/a+b + 2d -a/b+c
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
cho dãy số bằng nhau (2a+b+c+d)/a = (a+2b+c+d)/b = (a+b+2c+d)/c = (a+b+c+2d)/d
tính giá trị M = a+b/c+d + b+c/d+a c+d/a+b + d+a/b+c
Cho dãy tỷ số bằng nhau 2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d
Tính M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c