tìm số nguyên x, y biết: \(42-3\times\left(y-3\right)^2=4\times\left(2012-x\right)^4\)
Tìm số nguyên x,y biết : \(42-3\left|y-3\right|=4\left(2012-x\right)^4\)
Tìm số nguyên x,y biết : \(42-3\left|y-3\right|=4\left(2012-x\right)^4\)
Ta có: \(VP\ge0\forall x\)
\(\Rightarrow42-3\left|y-3\right|\ge0\forall y\)
\(\Rightarrow3\left|y-3\right|\le42\)
\(\Rightarrow0\le\left|y-3\right|\le14\)(1)
Mà dễ thấy 42 chẵn, \(4\left(2012-x\right)^4\)chẵn nên \(3\left|y-3\right|\)chẵn
\(\Rightarrow y-3\)chẵn (2)
Từ (1) và (2) suy ra \(\left|y-3\right|\in\left\{2;4;6;8;10;12;14\right\}\)
Mà \(42-3\left|y-3\right|⋮4\)
nên \(\left|y-3\right|\in\left\{2;6;10;14\right\}\)
Thử từng trường hợp ta chỉ thấy \(\left|y-3\right|=14\)thỏa mãn hay \(y\in\left\{17;-11\right\}\)
Lúc đó \(4\left(2012-x\right)^4=0\Rightarrow x=2012\)
Tìm x,y biết
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(2\times x+2^{x+3}=136\)
\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\left(2\times x-5\right)^{2000}+\left(3\times y+4\right)^{2002}\le0\)
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
Tìm x, y\(\in\) Z biết:
a, \(\left(2x+1\right)\times\left(4y-2\right)=-42\)
b, \(\left(x^2-13\right)\times\left(x^2-17\right)< 0\)
c, \(\left(x^2-4\right)+\left(y-3\right)=0\)
Tìm số nguyên x;y thỏa mãn :\(\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x-9\right)=y\times y\)
ta có (x+1)(x+3)=(x+8)(x-9)=y
<=> \(\frac{x+1}{x-9}\)= \(\frac{x+8}{x+3}\)
<=> \(\frac{x-9+10}{x-9}\) = \(\frac{x+3+5}{x+3}\)
<=>\(\frac{10}{x-9}\) = \(\frac{10}{2x+6}\)
<=> x-9=2x+6
<=> 3x=15
<=> x=5
lúc đó 6.8.13.(-4)=y2 mà y2\(\ge\)0
VẬy không có giá trị nào thỏa mãn x,y
Các bạn giúp mk các bài này với nhé:
1. Tìm các cặp (x;y) nguyên, biết:
\(x^2+x\times y-2\times y-3\times x=3\)
2. Tìm \(x\in N\), \(y\in N\) biết:
a) \(36-y^2=8\times\left(x-2019\right)^2\)
b) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\)
3. Tìm x, biết: |15 - | \(4\times x\)| | = 2019
4. Cho \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}\)
Chứng minh: \(4\times\left(a-b\right)\times\left(b-c\right)=\left(c-a\right)^2\)
3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5
cho 2 đa thức \(A=2\times x^2\times y^3-3\times x^3\times y^2+x^2\times y^2+1\)
\(B=2\times x^2\times y^3-3\times x^3\times y^2-x^2\times y^2+2\)
Tính \(2\times A-\left(B-\left(A-\left(-4\times B\right)\right)\right)\)
rút gọn :
a,\(\frac{x^5y}{\left(xy^4\right)}\)
b, \(\frac{3\times x^2\times y^5}{9\times x\times y^4}\)
c, \(\frac{\left(3\times x\times y^2\right)^4}{27\times x^5y^3}\)
\(\frac{x^5y}{xy^4}=\frac{x^4}{y^3}\)
\(\frac{3\times x^2\times y^5}{9\times x\times y^4}=\frac{xy}{3}\)
Tìm \(x,y\in Z\) biết :
\(42-3\left|y-3\right|=4\left(2012-x\right)^4\)