Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
Đào Linh Chi
Xem chi tiết
Blue Moon
28 tháng 11 2018 lúc 21:14

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

Blue Moon
Xem chi tiết
an danh
19 tháng 12 2018 lúc 19:55

no no sai r 

nghe da thay ngua r

dcv_new
21 tháng 4 2020 lúc 8:06

Hệ PT trên \(< =>\hept{\begin{cases}2x^2y-2y^3=3x\\2x.\left(2x^2+2y^2\right)=20y\end{cases}}\)

\(< =>\hept{\begin{cases}2x^2y-2y^3=3x\\4xy^2+4x^3=20y\end{cases}}\)

\(< =>\hept{\begin{cases}2xy-2y^3=3\\4xy+4x^3=20\end{cases}}\)

\(< =>2xy+4x^3+2y^3=17\)

\(< =>2y\left(x+y^2\right)+4x^3=17\)

\(< =>2\left(yx+y^3+2x^3\right)=17\)

\(< =>y\left(x+y^2\right)+2x^3=\frac{17}{2}\)

\(< =>...\)

Khách vãng lai đã xóa
Nguyễn Thị Hòa
Xem chi tiết
Thiên An
Xem chi tiết
alibaba nguyễn
12 tháng 2 2017 lúc 8:28

3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)

Xét phương trình (2) ta có:

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

Để PT theo nghiệm x có nghiệm thì 

\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\)

\(\Leftrightarrow1\le y\le\frac{7}{3}\)

\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)

Tương tự ta có:

\(0\le x\le\frac{4}{3}\)

\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)

Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm

alibaba nguyễn
11 tháng 2 2017 lúc 21:12

1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)

Xét phương trình đầu ta có

\(xy+x+y-x^2+2y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)

\(\Rightarrow x=1+2y\)

Thế vào pt dưới ta được

\(\sqrt{2y}\left(y+1\right)=2y+2\)

\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)

Tới đây tự làm tiếp nhé 

alibaba nguyễn
11 tháng 2 2017 lúc 21:21

2/ Ta lấy PT đầu - phương trình sau ta được

x2 + 1 + y(y + x) - 3y - (x2 + 1)(y + x - 2) = 0

<=> (y + x - 3)(y - x2 - 1) = 0

Tới đây làm tiếp nhé

trần gia bảo
Xem chi tiết
marivan2016
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Haibara ai
Xem chi tiết
Pain Thiên Đạo
22 tháng 5 2018 lúc 18:54

\(\hept{\begin{cases}2x+2y+3x-3y=4\\2x-2y+x+y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x-y=4\\3x-y=5\end{cases}}.\)

\(2x=-1\Leftrightarrow x=\frac{-1}{2}\) " thay x = 1/2 rồi tự làm

b) 

\(\hept{\begin{cases}6xy-9x+4y-6=6xy\\4xy-20x+5y-25=4xy\end{cases}\Leftrightarrow\hept{\begin{cases}-9x+4y=6\\-20x+5y=25\end{cases}}}\)

4y 5y " chung 20 "

\(\hept{\begin{cases}-45x+20y=30\\-80x+20y=100\end{cases}}\Leftrightarrow35x=-70\Leftrightarrow x=-2\)

thay x=-2 vào pt 1 hoăc 2 rồi tự làm

Anh
22 tháng 5 2018 lúc 18:53

hệ phương trình trên bạn đặt x+y=a và x-y= b sau đó bạn giải hệ vừa đặt ẩn phụ để tìm a, b rồi bạn giải cái hệ x+y=a và x-y= b là tìm đc x và y bạn nhé!

còn hệ phương trình dưới thì bạn chỉ cần nhân vào rồi chuyển vế nó sẽ mất hạng tử chứa x.y thì nó sẽ trở thành hệ bình thường rồi bạn giải hệ đó ra sẽ tìm đc x và y nha bạn!

Trắng_CV
22 tháng 5 2018 lúc 18:59

ukm , có vẻ tin Pain được