Tìm x, biết :
x + x + 1 + x + 2 + ... + 2007 + 2008 = 2008
Tìm x, biết :
X + x + 1 + x + 2 + ... + 2007 + 2008 = 2008
Tìm XEZ biết
a)x+(x+1)+(x+2)+........+2008=2008
b)2009+2008+2007+........+(x+1)+x=2009
a)=> (2008+x).2008/2=2008
=>(2008+x)=2
=>x=-2006
\(\frac{\text{(2007−x)^2+(2007−x)(x−2008)+(x−2008)^2}}{\text{(2007−x)^2−(2007−x)(2008−x)+(x−2008)^2}}=\frac{19}{49}\)Tìm x
Ta có: \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)
\(=\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\)
\(=1\)
Tìm x thuộc Z, biết :
a/ x + (x + 1) + (x + 2)+...+2008 = 2008
b/ 2009 + 2008 + 2007 +...+(x + 1) + x + 2009
Tìm x biết : x - 1 / 2009 + x - 2 / 2008 = x - 3 / 2007 + x- 4 / 2006
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\right)=0\)
\(\Leftrightarrow x=2010\)
Tìm x biết:
(x - 1)/2009 + (x - 2)/2008 = (x - 3)/2007 + (x - 4)/2006
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=0\)
\(\Rightarrow x-2010=0\Rightarrow x=2010\)
Tìm x∈Z biết
\(\dfrac{x+4}{2008}+\dfrac{x+3}{2007}=\dfrac{x+2}{2009}+\dfrac{x+1}{2010}\)
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{29}\)
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{49}\)
điểu kiện xác định x khác 2007 and x khác 2008
Đặt a=x-2008 ( a khác 0 ,) ta có hệ thức
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\)
=>\(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
=>\(49a^2+49a+49=57a^2+57a+19\)
=>\(8a^2+8a-30=0\)
=>\(\left(2a-1\right)^2-4^2=0=>\left(2a-3\right)\left(2a+5\right)=0\)
=>\(\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}}\)(Thỏa mãn điều kiện)
Tự thay a xong suy ra x nhá
Mệt lắm r
\(???\)\(\frac{19}{29}ak\)
ko sao , bạn cx nhân chéo lên tương tự như cách làm của mình xong => ra a mà làm nha . Hihi ..^^
tìm x biết |x-2007|-|x-2008|=1