chứng minh rằng 8 mũ 2 nhân 2 mux4 chia hết cho 17
chứng minh rằng 8 mũ 8 + 2 mũ 20 chia hết cho 17
Ta có: \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}\)
\(=2^{20}\cdot\left(2^4+1\right)=2^{20}\cdot\left(16+1\right)=2^{20}\cdot17\)
Vì \(2^{20}\cdot17⋮17\) nên \(8^8+2^{20}⋮17\)
bài 1:chứng minh rằng
a.D=45+99+180 chia hết cho 9
b.B=16 mũ 5+2 mũ 15 chia hết cho 33
c.G=8 mũ 8+2 mũ 20 chia hết cho 17
Bài 1:
chứng tỏ rằng
8 mũ 5 +2 mũ 11 chia hết cho 17
69 mũ 2 trừ 69 nhân 5 chia hết cho 32
8 mũ 7 trừ 2 mũ 18 chia hết cho 14 ( làm đc 1 like)
85 + 211 = (23)5 + 211 = 215 + 211
= 211.24 + 211.1 = 211.(16 + 1) = 211 . 17 (chia hết cho 17)
692 - 69.5 = 69.69 - 69.5
= 69.(69 - 5) = 69.64 = 69.2. 32 (chia hết cho 32)
87 - 218 = (23)7 - 218 = 221 - 218
= 218. 23 - 218.1 = 218.(8 - 1)
= 218 . 7 = 217 . 2 . 7 = 217 . 14 (chia hết cho 14)
chứng tỏ rằng:
8 mũ 5+ 2 mũ 11 chia hết cho 17
69 mũ 2 - 69.5 chia hết cho 32
8 mũ 7 - 2 mũ 19 chia hết cho 14
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
Chứng tỏ rằng :
a, 8 mũ 15 +2 mũ 11 chia hết cho 17.
b, 69 mũ 2 - 69.5 chia hết cho 32.
c, 8 mũ 7 - 2 mũ 18 chia hết cho 14
Chứng minh rằng 16 mũ 5 + 2 mũ 15 chia hết cho 17
\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\)
Không chia hết cho 17. em xem lại đề bài nhé.
chứng minh rằng 2018 mũ 2006 trừ đi 2 mũ 2006 chia hết cho 17
Cho A= 11 mũ 9 + 11 mũ 8 +............+ 11+1 Chứng minh rằng A chia hết cho 5
cho B=2+2 mũ 2 + 2 mũ 3 +.................+ 2 mũ 20 chứng minh rằng B chia hết cho 5
Giúp mình với
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
A=(1+11+11.1
thôi cậu tự làm dễ mà
1] chứng minh rằng ab - ab chia hết cho 9
2] chứng minh rằng 7 mũ 8+ 7 mũ 7 - 7 mũ 6chia hết cho 55
1] chứng minh rằng ab - ab chia hết cho 9
Ta có:ab-ab=0\(⋮\)9
2] chứng minh rằng 7 mũ 8+ 7 mũ 7 - 7 mũ 6chia hết cho 55
Ta có:78+77-76=76.(72+7-1)=76.55\(⋮\)5
\(\overline{ab}-\overline{ba}\)
\(=\left(10a+b\right)-\left(10b+a\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
\(7^8+7^7-7^6\)
\(=7^6\cdot\left(7^2+7-1\right)\)
\(=7^6\cdot\left(49+7-1\right)\)
\(=7^6\cdot\left(56-1\right)\)
\(=7^6\cdot55⋮55\)