Cho y= f( x)= x^2-2
A. Tìm a để M( a; -3) thuộc đồ thị hàm số trên
B. Điểm B(a;-2) có thuộc đồ thị hàm số không
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4
cho đa thức f(x)=ax2 - (5a-2)x+2
a) tìm a để f(x) có nghiệm x=2
b) với giá trị a vừa tìm được, hãy tìm nghiệm còn lại của f(x)
a) Khi x = 2 là nghiệm của đa thức f(x) thì
\(f\left(x\right)=a.2^2-\left(5a-2\right).2+2=0\\ \Leftrightarrow4a-10a+4+2=0\\ \Leftrightarrow-6a=-6\\ \Leftrightarrow a=1\)
Vậy để x = 2 là nghiệm của đa thức f(x) thì a = 1
b) Khi a = 1 để f(x) có nghiệm thì
\(f\left(x\right)=x^2-x.\left(5-2\right)+2=0\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy khi a = 1 thì nghiệm của đa thức f(x) là \(x\in\left\{1;2\right\}\)
a) Cho F(x)=ax^3-(2a+1)x^2+5. Tìm a để F(x) có nghiệm là x=-3
b) Cho F(x)=x^3-2ax+a^2; G(x)=x^4+(3a+1)x+a^2. Tìm a sao cho F(1)=G(3)
Gíup mk vs
Bài 31: Cho hàm số y = f(x) = 2X + a - 3. Tìm a nếu biết f(-2) = 5
Bài 32: Cho hàm số y = f(x) = ( a + 2)x + 2a + 5. Tìm a nếu biết f(-3) = 7.
31,\(f\left(-2\right)=2.\left(-2\right)+a-3=-4+a-3=a-7=5\Leftrightarrow a=12\)
32, \(f\left(-3\right)=\left(a+2\right).\left(-3\right)+2a+5=-3a-6+2a+5=-a-1=7\Leftrightarrow a=-8\)
Cho đa thức: f(x)=ax^3-(2a-1)*x^2+5 tìm a để f(x) có nghiệm x=-3 Tks nhiều
Cho hàm số y=f(x)=(3-x)x+1. a)Tìm m để f(3)=7. b)Tìm m để đồ thị đi qua điểm A(2;5). c) Chứng minh rằng với m vừa tìm được ở câu a, ta có f(3)+f(5)=4-2*f(-4)
tìm a để f(x)=x^4-22x^2+5x+2a
chia hết cho g(x)=x^2-3x+2
Cho parabol (P): y = -x^2 và đường thẳng (d): y = mx + 2
a)tìm m để (d) cắt (P) tại 1 điểm duy nhất
b)Cho 2 điểm A(-2,m) và B(1,m).Tìm m,n để A thuộc (P) và B thuộc (d)
a: Phương trình hoành độ giao điểm là:
\(-x^2-mx-2=0\)
\(\Leftrightarrow x^2+mx+2=0\)
\(\Delta=m^2-8\)
Để (P) cắt (d) tại 1 điểm duy nhất thì Δ=0
hay \(m\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
b: Thay x=-2 vào (P), ta được:
\(y=-\left(-2\right)^2=-4\)
hay m=-4
Cho hàm số y= F(x) = x×(x-2) và hàm số y= G(x) = -x+6
a) tính F(3); [ F(2/3) ]² ; G(-1/2)
b) tìm x để F(x)=0
c) tìm a để F(a)=G(a)
a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)
\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)
\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)
\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)
b: F(x)=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c: F(a)=G(a)
=>\(a\left(a-2\right)=-a+6\)
=>\(a^2-2a+a-6=0\)
=>\(a^2-a-6=0\)
=>(a-3)(a+2)=0
=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)
Cho đa thức f(x)=ax3 -(2a-1)x2 +5. TÌm a để f(x) có nghiệm x=-3
Có f(-3)=a(-3)3 -(2a-1)(-3)2 +5 = -27a - (2a - 1)9 + 5 = -27a - 18a - 9 +5 = -45a - 4
f(-3) = 0 <=> -45a - 4 = 0 <=> -45a = 4 <=> a = -4/45
Vậy a = -4/45