tìm tất cả các cặp số tự nhiên n và k sao cho n4+42k+1 là số tự nhiên
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
Tìm tất cả các cặp số tự nhiên (n;k)(n;k) với k>1k>1 sao cho A=172016.n+4.172.n+7.195.nA=172016.n+4.172.n+7.195.n có thể phân tích được thành kk số tự nhiên liên tiếp
Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
Tìm tất cả các cặp số tự nhiên n và k để \(n^4+4^{2k+1}\)là số nguyên tố
a) Tìm tất cả các số tự nhiên \(k\) sao cho \(2k+1\) và \(4k+1\) đều là các số chính phương.
b) Với mỗi số tự nhiên \(k\) thỏa mãn đề bài, chứng minh rằng \(35|k^2-12k\)
a) Tìm tất cả các cặp số tự nhiên (x,y) sao cho: 4x+5y=35
b) Tìm tất cả các cặp số tự nhiên khác 0 (x,y) sao cho: (2x+5).(x+2)=3y
c) Tìm các số nguyên tố x,y thỏa mãn: 272x=11y+29
d) Chứng minh rằng với mọi số tự nhiên n thì: (10n+72n-1) chia hết cho 81
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Tìm tất cả các cặp số tự nhiên (m,n) sao cho 2m+1 chia hết cho n và 2n+1 chia hết cho m.
Tìm tất cả các cặp số tự nhiên sao cho tích của chúng là 800 và số lớn là bội của số bé ????????????????????????????????????????
a) Tìm tất cả các cặp số nguyên sao cho tổng bằng tích
b) Tìm số tự nhiên n (n > 0) sao cho tổng A = 1!+ 2!+ 3!+...+ n! là một số chính phương.
A)(0;0)(1;1)
B)Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a)xy=x+y
=>xy-x-y=0
=>x(y-1)-(y-1)-1=0
=>x(y-1)-(y-1)=1
=>(y-1)(x-1)=1
=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0
b)Câu này khó quá nhưng ủng hộ nha