Tìm x, y biết: \(\frac{x}{2}=\frac{y}{-3}\) và \(^{3x^3-y^3=\frac{64}{9}}\)
Tìm 2 số x; y biết rằng:
a)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{-5}\\-3x+2y=55\end{cases}}\).
b)\(\hept{\begin{cases}\frac{x}{y}=\frac{-7}{4}\\4x-5y=72\end{cases}}\).
c)\(\hept{\begin{cases}\frac{x}{-3}=\frac{y}{8}\\x^2-y^2=\frac{-44}{5}\end{cases}}\).
d)\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-3}\\3x^3+y^3=\frac{64}{9}\end{cases}}\).
\(\frac{x}{2}=\frac{y}{-3};3x^3+y^3=\frac{64}{9}\)
\(\frac{x}{2}=\frac{y}{-3};3x^3+y^3=\frac{64}{9}\)
Làm hơi tắt :)) Bạn chỉ cần áp dụng tính chất dãy tỉ số bằng nhau là sẽ ra ngay thoi ạ :33
\(\frac{x}{2}=\frac{y}{-3}\Rightarrow\frac{x^3}{8}=\frac{y^3}{-27}=\frac{3x^3}{24}=\frac{3x^3+y^3}{24+\left(-27\right)}=\frac{\frac{64}{9}}{-3}=\frac{64}{-27}\)
\(\Rightarrow\hept{\begin{cases}x^3=\frac{64}{-27}.8=\frac{512}{-27}\Rightarrow x=\frac{8}{-3}\\y^3=\frac{64}{-27}.\left(-27\right)=64\Rightarrow y=4\end{cases}}\)
1)Tìm x;y;z biết:
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và x2+y2+z2=14
2)Cho \(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}\).Tính:
\(S=\frac{3x-4y}{2z+3y-5x}\)
2) Theo đề được: \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{5x}{25}=\frac{3y}{21}\)
Áp dụng t/c dãy tỉ số = nhau được:
\(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{3x-4y}{15-28}=\frac{3x-4y}{-13}\)
và \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{2z+3y-5x}{18+21-25}=\frac{2z+3y-5x}{14}\)
Vì \(\frac{3x-4y}{-13}=\frac{2z+3y-5x}{14}\) nên \(\frac{3x-4y}{2z+3y-5x}=\frac{-13}{14}\)
1) Ta có: \(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\) hay\(\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
Do đó: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2=\left(\frac{z}{6}\right)^2\) hay \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
=> x=1 ; y=2 ; z=3
Tìm x,y,z .Biết:
a) 3x = 5y = 10z và x + 2y - 3z = 42
b) \(\frac{3}{x-1}\) =\(\frac{4}{y-2}\) = \(\frac{5}{z-3}\) và x + y+ z = 18
c)\(\frac{x^3+y^3}{6}\) = \(\frac{x^3-2y^3}{4}\) và x6 . y6 = 64
tìm x,y,x biết
a)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x-3y+z=6
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x.y+y.z+z.x=64
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
tìm x ; y ; z biết
\(\frac{x}{19}=\frac{y}{21}\)và 2x -y = 34
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\)và 5x + y - 2z = 28
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z =186
\(3x=2y;7y=5z\)và x - y + z = 32
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + x = 49
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và x2 + y2 + z2 = 14
\(2x=3y;5y=7z\)và 3x + 5z - 7y = 30
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k
Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3
=> x=2.3=6
y=3.3=9
z=5.3=15
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> x2/4 = 1/4 => x2 = 1 => x=\(\pm1\)
y2/16 = 1/4 => y2 = 4 => \(y=\pm2\)
z2/36 = 1/4 => z2 = 9 => \(z=\pm3\)
Tìm x,y,z biết
a/\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và \(x^2-y^2=-16\)
b/\(\frac{3x}{8}=\frac{3x}{64}=\frac{3x}{216}\) và \(2x^2+2y^2-z^2=1\)
c/\(4x=3y;5y=3z\)và \(2x-3y+z=6\)
d/\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)và \(2x+3y+z=172\)
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)