1x3+3x5+5x7+...+97x99
tinh E=1x3+3x5+5x7+...+97x99+99x101
tinh E= 1x3+3x5+5x7+....+97x99+99x101
tính nhanh
1x3 + 3x5 + 5x7 + 7x9 + ......... + 97x99
1/1x3 + 1/3x5 + 1/5x7 + .... + 1/97x99
Đặt S là biểu thức trên
\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{97.99}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{98}{99}\)
\(\Rightarrow S=\frac{49}{99}\)
Vậy biểu thức trên có giá trị là \(\frac{49}{99}\)
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{97\times99}\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+....+\frac{1}{97\times99}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\times\frac{98}{99}\)
\(=\frac{49}{99}\)
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{97x99}\)
\(=\frac{1}{2}x(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99})\)
\(=\frac{1}{2}x\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}x\frac{98}{99}\)
\(=\frac{49}{99}\)
giúp em câu này ikkk . 3/1x3+3/3x5+3/5x7+......+3/97x99
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{98}{99}=\dfrac{1}{33}\cdot49=\dfrac{49}{33}\)
Tính tổng:(giúp em nhá) B=1x3+3x5+5x7+7x9+...+95x97+97x99
B=1x3+3x5+5x7+7x9+...+95x97+97x99
= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)
= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2
= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)
= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)
Đặt : A = 12+32 +52+...+952+ 972
C =1+3 +5+...+95+97
tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B
Tính tổng:(giúp em nhá)
B=1x3+3x5+5x7+7x9+...+95x97+97x99
Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)
\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)
\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)
\(=97\times99\times101+3\)
\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)
6B=1x3x6+3x5x6+5x7x6+.....+97x99x6
6B=1x3x(5+1)+3x5x(7-1)+....+97x99x(102-95)
6B=1x3x5+1x3+3x5x7-3x5+....+97x99x101-95x97x99
6B=1x3x97x99x101
6B=969906
=>B=161651
6B = 1x3x6 + 3x5x6 + 5x7x6 +...+ 99x101x6
= 1x3(5+1)+3x5(7-1)+...+97x99(101-95)
= 1x3x5+1x3+3x5x(7-1)+...-97x99x95
=97x99x101+3 rồi tự làm..................... >.<
tính bằng cách hợp lí
3/1x3 + 3/3x5 + 3/5x7 +.....+3/97x99
tinh
S = 2/1x3-4/3x5+6/5x7-8x7x9+...-96/95x97+98/97x99