Cho 3a + 2b chia hết cho 17 ( a, b thuộc N). Chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
cho 3a+2b chia hết cho 17(a,b thuộc N).Chứng minh rằng:10a+b chia hết cho 17
Ta có: 17a chia hết cho 17
suy ra :17a+3a+b chia hết cho 17
suy ra :20a+2b chia hết cho 17
rút gọn cho 2
suy ra :10a+b a hết cho 17
Cho 3a +2b chia hết cho 17(a,b thuộc N ). Chứng minh rằng :10a+b chia hết cho 17
do 3a+2b⋮⋮17
\Rightarrow⇒8(3a+2b)⋮⋮17
Ta có 8(3a+2b)+10a+b
=24a+16b+10a+b
=34a+17b
17(2a+b)⋮⋮17
vậy 8(3a+2b)+10a+b ⋮⋮17
mà 8(3a+2b)⋮⋮17 (\forall∀a,b\in∈N)
nên 10a+b⋮⋮17
\(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)
Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)
\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)
\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)
Cho 3a+2b chia hết cho 17 [a,b thuộc n] . Chứng minh rằng 10a + b cũng chia hết cho 17
Ta có: 3a+2b chia hết cho 17
=>9(3a+2b) chia hết cho 17
=>27a+18b chia hết cho 17
=>(27a-17a)+(18b-17b) chia hết cho 17 (do 17a,17b chia hết cho 17)
=>10a+b chia hết cho 17 (đpcm)
1. a, Cho biết 3a+2b chia hết cho 17 (a,b thuộc N). Chứng minh 10a+b chia hết co 17
b, Biết a-5b chia hết cho 17. Chứng minh 10a+b chia hết cho 17(a,b thuộc N)
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
Cho 3a + 2b chia hết cho 17 (a,b thuộc N)
Chứng minh rằng: 10a + b chia hết cho 17
cho 3a = 2b chia hết cho 17( a,b thuộc N) . Chứng minh rằng 10a =b chia hết cho 17
3a + 2b chia hết cho 17
17a + 3a + 2b chia hết cho 17
Mà 17a chia hết cho 17
20a + 2b chia hết cho 17
=> (20a + 2b):2 chia hết cho 17
10a + b chia hết cho 17
Vậy 10a + b chia hết cho 17 (đpcm)
cho biết 3a + 2b chia hết cho 17 (a,b thuộc N).Chứng minh rằng 10a + b chia hết cho 17
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.