Tim cac so tu nhien de 10 - 2n chia het n - 2
tim cac so tu nhien n de : n2+2n+6 chia het cho n+4
Tim so tu nhien n de
10 - 2n chia het n- 2
tim cac so tu nhien n de n^100 + 5 chia het cho 10
\(n^{100}+5\)chia hết cho 10
=> \(n^{100}+5\)có tận cùng là 0
=> \(n^{100}\)có tận cùng là 5
=> \(n\)có tận cùng là 5
Mà theo đề bài \(n\in N\)
=> \(n\in\left\{5;15;25;35;......\right\}\)
cho 2^100 va 5^100. lap thanh 1 so. hoi so do co bao nhieu chu so
tim cac so tu nhien n de n^10+1 chia hết cho 10
co ton tai so tu nhien n de n^2+n+2 chia het cho 5 hay khong
tim tat ca cac so tu nhien n thoa man 2n+13 chia het cho n-2 ?
2n + 13 ⋮ n - 2 ( n \(\in\) N; n ≠ 2)
2n - 4 + 17 ⋮ n - 2
2.(n - 2) + 17 ⋮ n - 2
17 ⋮ n - 2
n - 2\(\in\) Ư(17) = {-17; -1; 1; 17}
n \(\in\) {-15; 1; 3; 15}
tim so tu nhien n lon nhat de tich cac so tu nhien tu 1 den 1000 chia het cho 5
a. chung minh rang voi so tu nhien n thi so 9 2n-1 chia het cho 2
b. cho 76a23.Tim a de 76a23 trong cac gia tri vua tim duoc cua a co gia tri nao lam cho so 76a23 chia het cho 11 hay khong
tim so tu nhien n lon nhat de tich cac so tu nhien tu 1 den 1000 chia het cho 5n
Để n lớn nhất thì n chính là số các thừa số 5 xuất hiện trong tích các số từ 1 đến 1000
Xét 5n < 1000 . ta có: 54 = 625 < 1000 < 55
- Tìm các số chia hết cho 5 từ 1 đến 1000 gồm: 5; 10; 15;....;1000
=> có (1000 - 5) : 5 + 1 = 200 số
- tìm các số chia hết cho 25 (Vì 25 = 5.5) gồm: 25; 50; ...; 1000
=> có: (1000 - 25) : 25 + 1 = 40 số
- Tìm các số chia hết cho 125 (125 = 5.5.5) gồm: 125; 250;...; 1000
=> có : (1000 - 125): 125 + 1 = 8 số
- Tìm các số chia hết cho 625 (625 = 5.5.5.5) gồm: 625 => có 1 số
Vì những số chia hết cho 625 sẽ chia hết cho 125 ; 125; 25; 5 nên trong cách tính trên có đếm trùng
Vậy có : 1 số chia hết cho 625; => có 4 số 5 trong tích
7 số chia hết cho 125 => có 7.3 = 21 số 5 trong tích
32 số chia hết cho 25 => có 32 x 2 = 64 số 5 trong tích
200 - 40 = 160 số chỉ chia hết cho 5 => có 160.1 = 160 số 5 trong tích
Vậy có tất cả: 4 + 21 + 64 + 160 = 249 thừa số 5 trong tích
Vậy n lớn nhất = 249
Tim so tu nhien n de (2n+3) chia het cho (2n+1)
Theo đầu bài ta có:
2n + 3 chia hết cho 2n + 1
Mà 2n + 1 chia hết cho 2n + 1
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho 2n + 1
=> 2 chia hết cho 2n + 1
=> 2n + 1 = { -2 ; -1 ; 1 ; 2 }
=> n = { -1,5 ; -1 ; 0 ; 0,5 }
Do n là số tự nhiên nên n = 0.
2n+3 chc 2n+1
=>2n+1+2 chc 2n+1
=>1 chc 2n+1
=>2n+1=1
=>2n=0
=>n=0